Chiral perturbation theory for nonzero chiral imbalance

  1. Nicola, A. Gómez
  2. Espriu, D.
  3. Vioque-Rodríguez, A.
Revista:
Journal of High Energy Physics

ISSN: 1029-8479

Año de publicación: 2020

Volumen: 2020

Número: 6

Tipo: Artículo

DOI: 10.1007/JHEP06(2020)062 GOOGLE SCHOLAR

Otras publicaciones en: Journal of High Energy Physics

Referencias bibliográficas

  • K. Fukushima, D.E. Kharzeev and H.J. Warringa, The chiral magnetic effect, Phys. Rev. D 78 (2008) 074033 [arXiv:0808.3382] [INSPIRE].
  • D.E. Kharzeev, The chiral magnetic effect and anomaly-induced transport, Prog. Part. Nucl. Phys. 75 (2014) 133 [arXiv:1312.3348] [INSPIRE].
  • K. Fukushima and K. Mameda, Wess-Zumino-Witten action and photons from the chiral magnetic effect, Phys. Rev. D 86 (2012) 071501 [arXiv:1206.3128] [INSPIRE].
  • A.A. Andrianov, V.A. Andrianov, D. Espriu and X. Planells, Dilepton excess from local parity breaking in baryon matter, Phys. Lett. B 710 (2012) 230 [arXiv:1201.3485] [INSPIRE].
  • A.A. Andrianov, V.A. Andrianov, D. Espriu and X. Planells, Analysis of dilepton angular distributions in a parity breaking medium, Phys. Rev. D 90 (2014) 034024 [arXiv:1402.2147] [INSPIRE].
  • A. Andrianov, V. Andrianov and D. Espriu, QCD with chiral imbalance: models vs. lattice, EPJ Web Conf. 137 (2017) 01005 [INSPIRE].
  • J. Gasser and H. Leutwyler, Chiral perturbation theory to one loop, Annals Phys. 158 (1984) 142 [INSPIRE].
  • J. Gasser and H. Leutwyler, Chiral perturbation theory: expansions in the mass of the strange quark, Nucl. Phys. B 250 (1985) 465 [INSPIRE].
  • M.N. Chernodub and A.S. Nedelin, Phase diagram of chirally imbalanced QCD matter, Phys. Rev. D 83 (2011) 105008 [arXiv:1102.0188] [INSPIRE].
  • K. Fukushima, M. Ruggieri and R. Gatto, Chiral magnetic effect in the PNJL model, Phys. Rev. D 81 (2010) 114031 [arXiv:1003.0047] [INSPIRE].
  • R. Gatto and M. Ruggieri, Hot quark matter with an axial chemical potential, Phys. Rev. D 85 (2012) 054013 [arXiv:1110.4904] [INSPIRE].
  • A.A. Andrianov, D. Espriu and X. Planells, Chemical potentials and parity breaking: the Nambu-Jona-Lasinio model, Eur. Phys. J. C 74 (2014) 2776 [arXiv:1310.4416] [INSPIRE].
  • L. Yu, H. Liu and M. Huang, Effect of the chiral chemical potential on the chiral phase transition in the NJLS model with different regularization schemes, Phys. Rev. D 94 (2016) 014026 [arXiv:1511.03073] [INSPIRE].
  • V.V. Braguta and A. Yu. Kotov, Catalysis of dynamical chiral symmetry breaking by chiral chemical potential, Phys. Rev. D 93 (2016) 105025 [arXiv:1601.04957] [INSPIRE].
  • M. Ruggieri and G.X. Peng, Critical temperature of chiral symmetry restoration for quark matter with a chiral chemical potential, J. Phys. G 43 (2016) 125101 [arXiv:1602.05250] [INSPIRE].
  • T.G. Khunjua, K.G. Klimenko and R.N. Zhokhov, Dualities and inhomogeneous phases in dense quark matter with chiral and isospin imbalances in the framework of effective model, JHEP 06 (2019) 006 [arXiv:1901.02855] [INSPIRE].
  • T.G. Khunjua, K.G. Klimenko and R.N. Zhokhov, Charged pion condensation and duality in dense and hot chirally and isospin asymmetric quark matter in the framework of the NJL2 model, Phys. Rev. D 100 (2019) 034009 [arXiv:1907.04151] [INSPIRE].
  • A.A. Andrianov, D. Espriu and X. Planells, An effective QCD Lagrangian in the presence of an axial chemical potential, Eur. Phys. J. C 73 (2013) 2294 [arXiv:1210.7712] [INSPIRE].
  • A. Yamamoto, Lattice study of the chiral magnetic effect in a chirally imbalanced matter, Phys. Rev. D 84 (2011) 114504 [arXiv:1111.4681] [INSPIRE].
  • V.V. Braguta et al., Two-color QCD with non-zero chiral chemical potential, JHEP 06 (2015) 094 [arXiv:1503.06670] [INSPIRE].
  • V.V. Braguta, E.M. Ilgenfritz, A. Yu. Kotov, B. Petersson and S.A. Skinderev, Study of QCD phase diagram with non-zero chiral chemical potential, Phys. Rev. D 93 (2016) 034509 [arXiv:1512.05873] [INSPIRE].
  • B. Feng, D.-F. Hou, H. Liu, H.-C. Ren, P.-P. Wu and Y. Wu, Chiral magnetic effect in a lattice model, Phys. Rev. D 95 (2017) 114023 [arXiv:1702.07980] [INSPIRE].
  • N. Yu. Astrakhantsev, V.V. Braguta, A. Yu. Kotov, D.D. Kuznedelev and A.A. Nikolaev, Lattice study of QCD at finite chiral density: topology and confinement, arXiv:1902.09325 [INSPIRE].
  • R.L.S. Farias, D.C. Duarte, G. Krein and R.O. Ramos, Thermodynamics of quark matter with a chiral imbalance, Phys. Rev. D 94 (2016) 074011 [arXiv:1604.04518] [INSPIRE].
  • S.-S. Xu, Z.-F. Cui, B. Wang, Y.-M. Shi, Y.-C. Yang and H.-S. Zong, Chiral phase transition with a chiral chemical potential in the framework of Dyson-Schwinger equations, Phys. Rev. D 91 (2015) 056003 [arXiv:1505.00316] [INSPIRE].
  • N. Yamamoto and M. Hanada, Universality of phase diagrams in QCD and QCD-like theories, PoS(Lattice 2011)221 (2012) [arXiv:1111.3391] [INSPIRE].
  • A. Andrianov, V. Andrianov and D. Espriu, Chiral perturbation theory vs. linear sigma model in a chiral imbalance medium, Particles 3 (2020) 15.
  • S. Scherer, Introduction to chiral perturbation theory, Adv. Nucl. Phys. 27 (2003) 277 [hep-ph/0210398] [INSPIRE].
  • R. Urech, Virtual photons in chiral perturbation theory, Nucl. Phys. B 433 (1995) 234 [hep-ph/9405341] [INSPIRE].
  • U.-G. Meissner, G. Muller and S. Steininger, Virtual photons in SU(2) chiral perturbation theory and electromagnetic corrections to ππ scattering, Phys. Lett. B 406 (1997) 154 [Erratum ibid. B 407 (1997) 454] [hep-ph/9704377] [INSPIRE].
  • M. Knecht and R. Urech, Virtual photons in low-energy ππ scattering, Nucl. Phys. B 519 (1998) 329 [hep-ph/9709348] [INSPIRE].
  • G. Ecker, J. Gasser, A. Pich and E. de Rafael, The role of resonances in chiral perturbation theory, Nucl. Phys. B 321 (1989) 311 [INSPIRE].
  • R.F. Alvarez-Estrada and A. Gomez Nicola, Effective chiral Lagrangian from QCD at nonzero chemical potential, Phys. Lett. B 355 (1995) 288 [Erratum ibid. B 380 (1996) 491] [INSPIRE].
  • D.T. Son and M.A. Stephanov, QCD at finite isospin density: from pion to quark-anti-quark condensation, Phys. Atom. Nucl. 64 (2001) 834 [hep-ph/0011365] [INSPIRE].
  • M. Loewe and C. Villavicencio, Thermal pions at finite isospin chemical potential, Phys. Rev. D 67 (2003) 074034 [hep-ph/0212275] [INSPIRE].
  • P. Adhikari, J.O. Andersen and P. Kneschke, Two-flavor chiral perturbation theory at nonzero isospin: pion condensation at zero temperature, Eur. Phys. J. C 79 (2019) 874 [arXiv:1904.03887] [INSPIRE].
  • P. Adhikari and J.O. Andersen, Pion and kaon condensation at zero temperature in three-flavor χPT at nonzero isospin and strange chemical potentials at next-to-leading order, arXiv:1909.10575 [INSPIRE].
  • I.A. Shushpanov and A.V. Smilga, Quark condensate in a magnetic field, Phys. Lett. B 402 (1997) 351 [hep-ph/9703201] [INSPIRE].
  • R. Kaiser, Anomalies and WZW term of two flavor QCD, Phys. Rev. D 63 (2001) 076010 [hep-ph/0011377] [INSPIRE].
  • J. Gasser, M.E. Sainio and A. Svarc, Nucleons with chiral loops, Nucl. Phys. B 307 (1988) 779 [INSPIRE].
  • R.D. Pisarski and M. Tytgat, Propagation of cool pions, Phys. Rev. D 54 (1996) R2989 [hep-ph/9604404] [INSPIRE].
  • Flavour Lattice Averaging Group collaboration, FLAG review 2019: Flavour Lattice Averaging Group (FLAG), Eur. Phys. J. C 80 (2020) 113 [arXiv:1902.08191] [INSPIRE].
  • P. Gerber and H. Leutwyler, Hadrons below the chiral phase transition, Nucl. Phys. B 321 (1989) 387 [INSPIRE].
  • C. Ratti, Lattice QCD and heavy ion collisions: a review of recent progress, Rept. Prog. Phys. 81 (2018) 084301 [arXiv:1804.07810] [INSPIRE].
  • HotQCD collaboration, Chiral crossover in QCD at zero and non-zero chemical potentials, Phys. Lett. B 795 (2019) 15 [arXiv:1812.08235] [INSPIRE].
  • R.D. Pisarski and F. Wilczek, Remarks on the chiral phase transition in chromodynamics, Phys. Rev. D 29 (1984) 338 [INSPIRE].
  • A.V. Smilga and J.J.M. Verbaarschot, Scalar susceptibility in QCD and the multiflavor Schwinger model, Phys. Rev. D 54 (1996) 1087 [hep-ph/9511471] [INSPIRE].
  • S. Ferreres-Solé, A. Gómez Nicola and A. Vioque-Rodríguez, Role of the thermal f0 (500) in chiral symmetry restoration, Phys. Rev. D 99 (2019) 036018 [arXiv:1811.07304] [INSPIRE].
  • A. Gómez Nicola and J. Ruiz De Elvira, Chiral and U(1)A restoration for the scalar and pseudoscalar meson nonets, Phys. Rev. D D 98 (2018) 014020 [arXiv:1803.08517] [INSPIRE].
  • J. Gasser and H. Leutwyler, Thermodynamics of chiral symmetry, Phys. Lett. B 188 (1987) 477 [INSPIRE].
  • A. Gomez Nicola, J.R. Pelaez and J. Ruiz de Elvira, Non-factorization of four-quark condensates at low energies within chiral perturbation theory, Phys. Rev. D 82 (2010) 074012 [arXiv:1005.4370] [INSPIRE].
  • A. Gomez Nicola, J.R. Pelaez and J. Ruiz de Elvira, Scalar susceptibilities and four-quark condensates in the meson gas within chiral perturbation theory, Phys. Rev. D 87 (2013) 016001 [arXiv:1210.7977] [INSPIRE].
  • C. Vafa and E. Witten, Parity conservation in QCD, Phys. Rev. Lett. 53 (1984) 535 [INSPIRE].
  • A.A. Andrianov, V.A. Andrianov and D. Espriu, Spontaneous P-violation in QCD in extreme conditions, Phys. Lett. B 678 (2009) 416 [arXiv:0904.0413] [INSPIRE].
  • TWQCD collaboration, Topological susceptibility to the one-loop order in chiral perturbation theory, Phys. Rev. D 80 (2009) 034502 [arXiv:0903.2146] [INSPIRE].
  • F.-K. Guo and U.-G. Meissner, Cumulants of the QCD topological charge distribution, Phys. Lett. B 749 (2015) 278 [arXiv:1506.05487] [INSPIRE].
  • A. Gómez Nicola, J. Ruiz De Elvira and A. Vioque-Rodríguez, The QCD topological charge and its thermal dependence: the role of the η′ , JHEP 11 (2019) 086 [arXiv:1907.11734] [INSPIRE].