Aspects on Effective Theories and the QCD Transition

  1. Gómez Nicola, Angel
Revista:
Symmetry

ISSN: 2073-8994

Año de publicación: 2020

Volumen: 12

Número: 6

Páginas: 945

Tipo: Artículo

DOI: 10.3390/SYM12060945 GOOGLE SCHOLAR

Otras publicaciones en: Symmetry

Resumen

We review recent advances in the understanding of the Quantum Chromodynamics (QCD) transition and its nature, paying special attention to the analysis of chiral symmetry restoration within different approaches based on effective theories. After presenting some of the main aspects of the current knowledge of the phase diagram from the theoretical, experimental and lattice sides, we discuss some recent problems where approaches relying on effective theories have been particularly useful. In particular, the combination of ideas such as Chiral Perturbation Theory, unitarity and Ward Identities allows us to describe successfully several observables of interest. This is particularly relevant for quantities expected to be dominated by the light meson components of the hadron gas such as the scalar and topological susceptibilities. In addition, ward identities and effective Lagrangians provide systematic results regarding chiral and U ( 1 ) A partner degeneration properties which are of great importance for the interplay between those two transitions and the nature of chiral symmetry restoration. Special attention is paid to the connection of this theoretical framework with lattice simulations.

Referencias bibliográficas

  • 10.1016/j.nuclphysa.2005.03.085
  • 10.1016/j.nuclphysa.2005.03.086
  • 10.1088/1361-6633/aabb97
  • 10.1140/epja/i2019-12922-0
  • 10.1103/RevModPhys.80.1455
  • 10.1103/PhysRevD.93.114502
  • 10.1103/PhysRevD.54.1087
  • 10.1103/PhysRevD.29.338
  • 10.1088/1126-6708/2009/06/088
  • 10.1007/JHEP09(2010)073
  • 10.1103/PhysRevD.85.054503
  • 10.1016/j.physletb.2019.05.013
  • 10.1103/PhysRevLett.123.062002
  • 10.1103/PhysRevD.67.014505
  • 10.1088/1126-6708/2007/01/077
  • 10.1088/1126-6708/2004/04/050
  • 10.1103/PhysRevLett.102.131601
  • 10.1103/PhysRevC.96.044904
  • 10.1038/s41586-018-0491-6
  • 10.1103/PhysRevLett.113.072001
  • 10.1007/s41365-017-0257-0
  • 10.1103/PhysRevD.98.030001
  • 10.1007/BF02751614
  • 10.1016/j.physletb.2003.08.001
  • 10.1140/epjc/s2003-01228-y
  • 10.1016/j.physletb.2005.07.025
  • 10.1088/0954-3899/32/11/013
  • 10.1016/j.nuclphysa.2010.02.015
  • 10.1103/PhysRevLett.109.151601
  • 10.1103/PhysRevD.87.105018
  • 10.1016/j.nuclphysa.2006.03.012
  • 10.1016/j.physletb.2012.10.001
  • 10.1016/j.physletb.2017.12.001
  • 10.1016/0378-4371(79)90223-1
  • Kapusta, (2006)
  • 10.1016/0003-4916(84)90242-2
  • 10.1016/0550-3213(85)90492-4
  • 10.1016/0550-3213(89)90346-5
  • 10.1016/0370-2693(89)91627-4
  • 10.1088/0034-4885/56/8/001
  • 10.1142/S0218301395000092
  • 10.1016/0146-6410(95)00041-G
  • 10.1088/0034-4885/58/6/001
  • 10.1016/0550-3213(79)90031-2
  • 10.1016/0550-3213(80)90370-3
  • 10.1016/S0550-3213(97)00260-5
  • 10.1007/s100520000499
  • 10.1140/epjc/s10052-019-7354-7
  • 10.1016/0550-3213(89)90349-0
  • 10.1016/0920-5632(88)90111-9
  • 10.1103/PhysRevLett.102.121601
  • 10.1140/epjc/s10052-009-0935-0
  • 10.1103/PhysRevD.73.045025
  • 10.1103/PhysRevD.79.014002
  • 10.1016/j.physletb.2011.06.059
  • 10.1140/epjc/s10052-012-1873-9
  • 10.1103/PhysRevD.85.074017
  • 10.1103/PhysRevD.94.034018
  • 10.1103/PhysRevD.97.014005
  • 10.1103/PhysRev.187.345
  • 10.1016/0375-9474(92)90005-5
  • 10.1103/PhysRevD.59.034004
  • 10.1103/PhysRevD.66.096007
  • 10.1103/PhysRevD.74.096003
  • 10.1103/PhysRevD.87.016001
  • 10.1103/PhysRevC.92.034905
  • 10.1103/PhysRevD.99.036018
  • 10.1103/PhysRevD.86.034003
  • 10.1016/j.physrep.2016.09.001
  • 10.1007/BF02859738
  • 10.1103/PhysRevLett.55.158
  • 10.1103/PhysRevLett.59.966
  • 10.1103/PhysRevD.54.4066
  • 10.1103/PhysRevD.62.056007
  • 10.1016/j.physletb.2008.07.106
  • 10.1103/PhysRevLett.61.2526
  • 10.1016/0370-2693(90)90109-J
  • 10.1103/PhysRevD.56.3057
  • 10.1016/S0375-9474(97)00160-7
  • 10.1103/PhysRevD.59.074001
  • 10.1103/PhysRevD.65.054009
  • Pelaez, (2003), AIP Conf. Proc., 660, pp. 102, 10.1063/1.1570564
  • 10.1103/PhysRevD.77.056006
  • 10.1103/PhysRevD.82.094019
  • 10.1016/0370-2693(92)90171-Y
  • 10.1103/PhysRevD.52.2878
  • 10.1103/PhysRevD.93.036001
  • 10.1103/PhysRevD.94.116008
  • 10.1016/0370-2693(87)90492-8
  • 10.1103/PhysRevD.47.5138
  • 10.1016/0370-2693(89)90985-4
  • 10.1103/PhysRevD.54.R2989
  • 10.1103/PhysRevC.92.024912
  • 10.1103/PhysRevC.93.014904
  • 10.1103/PhysRevC.99.024002
  • (2019), Nat. Phys., 15, pp. 1040, 10.1038/s41567-019-0583-8
  • Rapp, (2000), Adv. Nucl. Phys., 25, pp. 1
  • 10.1103/PhysRevD.95.036020
  • 10.1016/j.physletb.2015.12.065
  • 10.1103/PhysRevC.69.014903
  • 10.1103/PhysRevC.93.044906
  • 10.1016/S0370-2693(02)02959-3
  • 10.1103/PhysRevC.66.055201
  • 10.1103/PhysRevD.76.085020
  • 10.1140/epjc/s10052-008-0831-z
  • 10.1103/PhysRevD.88.076007
  • 10.1103/PhysRevD.28.2007
  • 10.1140/epjc/s10052-010-1446-8
  • 10.1016/j.physletb.2004.12.008
  • 10.1103/PhysRevC.54.3218
  • 10.1103/PhysRevD.100.114028
  • 10.1103/PhysRevLett.100.152001
  • 10.1103/PhysRevD.88.105018
  • 10.1103/PhysRevD.92.096008
  • 10.1103/PhysRevD.92.036011
  • 10.1103/RevModPhys.53.43
  • 10.1103/PhysRevD.89.054027
  • 10.1103/PhysRevD.53.5028
  • 10.1103/PhysRevLett.105.182301
  • 10.1016/j.physletb.2019.05.035
  • Shuryak, (1994), Comments Nucl. Part. Phys., 21, pp. 235
  • 10.1103/PhysRevD.54.R1867
  • 10.1103/PhysRevD.54.R1871
  • 10.1103/PhysRevD.88.096010
  • 10.1103/PhysRevD.94.074002
  • 10.1103/PhysRevD.93.016002
  • 10.3390/universe5010038
  • 10.1007/JHEP03(2016)186
  • 10.1103/PhysRevD.94.094505
  • 10.1103/PhysRevD.97.074016
  • 10.1103/PhysRevD.98.014020
  • 10.1103/PhysRevD.89.054514
  • 10.1103/PhysRevD.86.114512
  • 10.1103/PhysRevD.87.114514
  • 10.1103/PhysRevD.96.034509
  • 10.1007/JHEP12(2016)158
  • Brandt, (2019), arXiv
  • 10.1007/JHEP04(2017)036
  • 10.1007/JHEP12(2010)021
  • 10.1103/PhysRevD.92.014503
  • 10.1007/JHEP06(2017)034
  • 10.1016/0550-3213(85)90290-1
  • 10.1103/PhysRevD.81.094504
  • Karsch, (2003), arXiv
  • 10.1103/PhysRevD.95.114022
  • 10.1140/epjc/s10052-011-1564-y
  • 10.1103/PhysRevD.77.014511
  • Maezawa, (2013), arXiv
  • Gómez Nicola, (2019), JHEP, 11, pp. 086, 10.1007/JHEP11(2019)086
  • 10.1007/JHEP06(2015)175
  • 10.1007/JHEP01(2016)034
  • 10.1007/JHEP06(2012)051
  • 10.1140/epjc/s10052-016-4509-7
  • 10.1103/PhysRevD.98.094501
  • 10.1103/PhysRevD.46.5607
  • 10.1016/0550-3213(79)90332-8
  • 10.1103/PhysRevD.80.034502
  • 10.1007/JHEP03(2016)155
  • 10.1007/JHEP06(2019)106
  • 10.1016/j.physrep.2008.10.001
  • 10.1038/nature20115