Entornos de aprendizaje móviles adaptativos y evaluaciónCoMoLE y GeSES
- Ortigosa, Álvaro
- Bravo Agapito, Javier
- Carro Salas, Rosa María
- Martín, Estefanía
ISSN: 1138-2783
Año de publicación: 2010
Título del ejemplar: Adaptación y accesibilidad de las tecnologías para el aprendizaje
Volumen: 13
Número: 2
Páginas: 167-207
Tipo: Artículo
Otras publicaciones en: RIED: revista iberoamericana de educación a distancia
Resumen
En este artículo se presentan los fundamentos y experiencias de uso de dos sistemas que dan soporte a la creación y evaluación, respectivamente, de entornos de aprendizaje móviles adaptativos. En estos entornos, generados dinámicamente por el sistema CoMoLE, se recomiendan las actividades más adecuadas para ser realizadas por cada estudiante en cada momento, facilitándole así el aprovechamiento de su tiempo disponible; también se adapta la interfaz que da soporte a la realización de las actividades, seleccionando los contenidos y herramientas más apropiados en cada caso. Para ello, se consideran las características y necesidades del estudiante, sus acciones previas y el contexto en que se encuentra en ese momento. Sin embargo, es complejo evaluar cuán satisfactoriamente las recomendaciones y adaptaciones atienden las necesidades de cada usuario. Con el objetivo de evaluar entornos de enseñanza adaptativos, se diseñó el método GeSES que, utilizando técnicas de Minería de Datos, extrae, de los logs del sistema adaptativo, información sobre los puntos donde los estudiantes tuvieron mayores dificultades. Este método se ha utilizado para evaluar un entorno generado por CoMoLE. Los resultados obtenidos se presentan también en este artículo.
Referencias bibliográficas
- Agrawal, R.; Imielinski, T.; Swami, A. (1993). Mining association rules between sets of items in large databases. En: Buneman, P.; Jajodia, S. (eds.), Proceedings of ACM SIGMOD Conference on Management of Data, Washington, USA. ACM Press, (207-216).
- Arabie, P.; Hubert, L. J.; Soete, G. (1996). Clustering and Classification. World Scientific Publishers.
- Baker, R.; Corbett, A.T.; Koedinger, K. R. (2004). Detecting Student Misuse of Intelligent Tutoring Systems. En: Lester, C. J.; Vicari, R. M.; Paraquaçu, F. (eds.), Proceedings of the 7th International Conference on Intelligent Tutoring Systems, vol. 3220, Brazil: Springer. (531-540).
- Baker, R.; Yacef, K. (2009). The State of Educational Data Mining in 2009: A Review and Future Visions. Journal of Educational Data Mining, vol. 1 (1), (1- 15).
- Ben-Naim, D.; Bain, M.; Marcus, N. (2009). A User-Driven and Data-Driven Approach for Supporting Teachers in Reflection and Adaptation of Adaptive Tutorials. En Proceedings of the Second International Conference on Educational Data Mining EDM09, Córdoba, Spain, Universidad de Córdoba, (21-30).
- Bighini, C.; Carbonaro, A.; Casadei, G. (2003). InLinx for document classification, sharing and recommendation. Proceedings of the 3rd IEEE International Conference on Advanced Learning Technologies, 91-95.
- Brady, A.; Conlan, O.; Wade, V. (2004). Dynamic Composition and Personalization of PDA-based eLearning – Personalized mLearning. Proceedings of World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education 2004. Chesapeake, VA: AACE, (234-242).
- Bravo, J.; Vialardi, C.; Ortigosa, A. (2010). Using decision trees for improving AEH courses. Handbook of educational data mining. Chapter 26. Taylor and Francis.
- Brusilovsky P.; Kobsa A.; Vassileva J. (1998). Adaptive Hypertext and Hypermedia. Kluwer Academic Publishers, 1-43.
- Bull, S.; McEvoy, A. T.; Reid, E. (2003). Learner Models to Promote Reflection in Combined Desktop PC / Mobile Intelligent Learning Environments. En: Bull, S.; Brna, P.; Dimitrova, V. (eds.). Proceedings of the International Workshop on Learner Modelling for Reflection at 11th International Conference on Artificial Intelligent in Education, (199-208).
- Carro, R. M. (2001). Un mecanismo basado en tareas y reglas para la creación de sistemas hipermedia adaptativos: aplicación a la educación a través de Internet. Tesis doctoral. Departamento de Ingeniería Informática. Universidad Autónoma de Madrid.
- Chen, M.; Yen, J. (2007). An evaluation of learners’ satisfaction toward mobile learning. Proceedings of the 6th Conference on WSEAS International Conference on Applied Computer Science, vol. 6. World Scientific and Engineering Academy and Society, Stevens Point, Wisconsin, (382-388).
- Cui, Y.; Bull, S. (2005). Context and learner modelling for the mobile foreign language learner. System, vol. 33 (2), (353-367).
- Felder, R. M.; Silverman, L. K. (1988). Learning Styles and Teaching Styles in College Science Education. J. College Science Teaching, 23(5), (286-290).
- Gea-Megías, M.; Medina-Medina, N.; Rodríguez-Almendros, M. L.; RodríguezFórtiz, M. J. (2004). Sc@ut: Platform for Communication in Ubiquitous and Adaptive Environments Applied for Children with Autism. User-Centered Interaction Paradigms for Universal Access in the Information Society, Lecture Notes in Computer Science, vol. 3196, Springer Berlin / Heidelberg. (50- 67).
- Goh, T.; Kinshuk (2006). Getting Ready For Mobile Learning-Adaptation Perspective. Journal of Educational Multimedia and Hypermedia, vol. 15 (2), Chesapeake, VA: AACE. (175-198).
- Graham, P.; Bowerman, C.; Bokma, A. (2004). Adaptive navigation for mobile devices. Learning with mobile devices: research and development. London: LSDA, (61-67).
- International Conference on Wireless, Mobile and Ubiquitous Technologies in Education. (2010). [en línea] Disponible en: http://wmute2010.cl.ncu.edu.tw/ (consulta 2010, mayo).
- Khribi, M. K.; Jemni, M.; Nasraoui, O. (2008). Automatic Recommendations for e-Learning Personalization Based on Web Usage Mining Techniques and Information Retrieval. En: Díaz, P.; Kinshuk, Aedo, I.; Mora, E. (eds.). Proceedings of the 8th IEEE International Conference on Advanced Learning Technologies. Santander, Spain. IEEE Computer Society, (241- 245).
- Kinshuk, Lin T. (2004). Application of learning styles adaptivity in mobile learning environments. Third Pan Commonwealth Forum on Open Learning.
- Martín, E.; Carro, R. M. (2009). Supporting the Development of Mobile Adaptive Learning Environments: A Case Study. IEEE Transactions on Learning Technologies, vol. 2 (1), (23-36).
- Merceron, A.; Yacef, K. (2003). A web-based tutoring tool with mining facilities to improve learning and teaching. En: Hoppe, U.; Verdejo, F.; Kay, J. (eds.). Proceedings of the 11th International Conference on Artificial Intelligence in Education – AIED. Sydney, Australia. IOS Press, (201-208).
- Mobasher, B.; Cooley, R.; Srivastava, J. (2000). Automatic personalization based on Web usage mining. Communication of the Association of Computing Machinery (ACM), vol. 43 (8), (142-1519).
- Ogata, H.; Yano, Y. (2004). Context-aware support for computer-supported ubiquitous learning. Proceedings of IEEE International Workshop on Wireless and Mobile Technologies in Education, Taiwan. IEEE Computer Society, (27- 34).
- Quinlan, J.R. (1993). C4.5: programs for machine learning. Morgan Kaufmann Publishers, Inc., 17th Edition.
- Romero, C.; Porras, A. R.; Ventura, S.; Hervás, C.; Zafra, A. (2006). Using sequential pattern mining for links recommendation in adaptive hypermedia educational systems. En: Méndez-Vilas, A.; Solano, A.; Mesa, J. A.; Mesa, J. (eds.), Proceedings of the 4th International Conference on Multimedia and Information and Communication Technologies in Education Current Developments in Technology-Assisted Education (Technological Issues), vol. 2, Sevilla, Spain. (1016-1020).
- Romero, C.; Ventura, S. (2007). Educational Data Mining: a Survey from 1995 to 2005. Expert Systems with Applications, vol. 33 (1)(135-146).
- Romero, C.; Ventura, S. (eds.) (2006). Data Mining in e-Learning. WIT Press, Southampton, UK.
- Romero, C.; Ventura, S.; Barnes, T. Desmarais, M. (eds.) (2009). Proceedings of the Second International Conference on Educational Data Mining EDM09, Córdoba, Spain: Universidad de Córdoba.
- Romero, C.; Ventura, S.; de Bra, P. (2004). Knowledge Discovery with Genetic Programming for Providing Feedback to Courseware Authors. User Modeling and User-Adapted Interaction, vol. 14 (5), (425-464).
- Srivastava, J.; Cooley, R.; Deshpande, M.; Tan, P. (2000). Web Usage Mining: Discovery and Applications of Usage Patterns from Web Data. SIGKDD Explorations, vol. 1(2), (12-23).
- Su, J. M.; Tseng, S. S.; Wang, W.; Weng, J. F. (2006). Learning Portfolio Analysis and Mining for SCORM Compliant Environment. Educational Technology and Society, vol. 9 (1), (262-275).
- Talavera, L.; Gaudioso, E. (2004). Mining Student Data to Characterize Similar Behavior Groups in Unstructured Collaboration Spaces. En Proceedings of the Workshop on Artificial Intelligence Methods in Computer-Supported Collaborative Learning (CSCL) held in conjunction with the 16th European Conference on Artificial Intelligence ECAI, Valencia, Spain. (17-23).
- Traxler, J. (2007). Defining, Discussing and Evaluating Mobile Learning: the moving finger writes… The International Review of Research in Open and Distance Learning, vol. 8 (2). [en línea] Disponible en: http://www.irrodl.org/index.php/ irrodl/article/view/346/882 (consulta 2010, Mayo).
- Ueno, M. (2006). Online outlier detection of learners’ irregular learning processes. En: Romero & Ventura (eds.), Data Mining in e-Learning, (261-277).
- Verdejo, M. F.; Celorrio, C.; Lorenzo, E.; Sastre-Toral, T. (2006). An educational networking infrastructure supporting ubiquitous learning for school students. Proceedings of 6th IEEE International Conference on Advanced Learning Technologies, (174–178).
- Weber, G.; Specht, M. (1997). User modeling and adaptive navigation support in WWW-based tutoring systems. Proceedings of User Modeling ‘97, (289- 300).
- Witten, I. H.; Frank, E. (2000). Data Mining: practical machine learning tools and techniques with java implementations. Morgan Kaufmann Publishers Academic Press.
- World Conference on Mobile and Contextual Learning (2010). [en línea] Disponible en: http://www.mlearn2010.org/ (consulta 2010, Mayo).
- Yau, J.; Joy, M. (2007). A Context-aware and Adaptive Learning Schedule framework for supporting learners’ daily routines. Proceedings of the Mobile Communications and Learning Workshop, (31-37).
- Zaïane, O. R. (2006). Recommender System for e-Learning: Towards Non-Instructive Web Mining. En: Romero & Ventura (eds.), Data Mining in e-Learning, (79- 96).
- Zurita, G.; Nussbaum, M. (2004). A Constructivist Mobile Learning Environment Supported by a Wireless Handheld Network. Journal of Computer Assisted Learning, vol. 20, (235-243).