Volatility specifications versus probability distributions in VaR forecasting

  1. Laura Garcia-Jorcano 1
  2. Alfonso Novales 2
  1. 1 Universidad de Castilla-La Mancha
    info

    Universidad de Castilla-La Mancha

    Ciudad Real, España

    ROR https://ror.org/05r78ng12

  2. 2 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

Revista:
Documentos de Trabajo (ICAE)

ISSN: 2341-2356

Año de publicación: 2019

Número: 26

Páginas: 1-39

Tipo: Documento de Trabajo

Otras publicaciones en: Documentos de Trabajo (ICAE)

Resumen

We provide evidence suggesting that the assumption on the probability distribution for return innovations is more influential for Value at Risk (VaR) performance than the conditional volatility specification. We also show that some recently proposed asymmetric probability distributions and the APARCH and FGARCH volatility specifications beat more standard alternatives for VaR fore- casting, and they should be preferred when estimating tail risk. The flexibility of the free power parameter in conditional volatility in the APARCH and FGARCH models explains their better performance. Indeed, our estimates suggest that for a number of financial assets, the dynamics of volatility should be specified in terms of the conditional standarddeviation. Wedrawourresults on VaRforecastingperformance fromi) a variety of back testing approaches, ii) the Model Confidence Set approach, as well as iii) establishing a ranking among alternative VaR models using a precedence criterion that we introduceinthispaper.

Información de financiación

The authors gratefully acknowledge financial support from the grants Ministerio de Economía y Competitividad ECO2015-67305-P, Generalitat Valenciana PrometeoII/2013/015, Programa de Ayudas a la Investigación en Macroeconomía, Economía Monetaria, Financiera y Bancaria e Historia Económica 2015-2016 from Banco de España.

Financiadores

Referencias bibliográficas

  • Aas, K., & Haff, I.H. (2006). The generalized hyperbolic skew student’st-distribution. Journal of Financial Econometrics, 4(2), 275-309.
  • Abad, P., & Benito, S. (2012). A detail comparison of value at risk estimates. Mathematics and Computers in Simulation, 94, 258-276.
  • Abad, P., Benito, S., & Lopez, C. (2015). Role of the loss function in the VaR comparison. Journal of Risk Model Validation, 9(1), 1-19.
  • Abad, P., Benito, S., Lopez, C., & Sanchez-Granero, M.A. (2016). Evaluating the performance of the skewed distributions to forecast value-at-risk in the global financial crisis. Journal of Risk, 18(5), 1-28.
  • Abramowitz, M., & Stegun, I. A. (1972). Handbook of mathematical functions with formulas, graphs, and mathematical tables (Vol. 9). Dover: New York.
  • Andersen, T., Bollerslev, T., Diebold, F., & Labys, P. (2003). Modelling and forecasting realized volatility. Econometrica, 71, 529-629.
  • Ane, T. (2006). An analysis of the flexibility of Asymmetric Power GARCH models. Computational Statistics and Data Analysis, 51, 1293-1311.
  • Angelidis, T., Benos, A., & Degiannakis, S. (2007). A robust VaR model under different time periods and weighting schemes. Review of Quantitative Finance and Accounting, 28, 187-201.
  • Angelidis, T., & Degiannakis, S. (2006). Backtesting VaR models: An Expected Shortfall approach. http://dx.doi.org/10.2139/ssrn.898473.
  • Azzalini, A., & Capitanio, A. (2003). An asymmetric Generalization of Gaussian and Laplace Laws. Journal of the Royal Statistical Society, Series B, 65, 367-389.
  • Bali, T.G., & Theodossiou, P. (2007). A conditional-SGT-VaR approach with alternative GARCH model. Annals of Operations Research, 151, 241-267.
  • Barndorff-Nielsen, O.E. (1997). Normal Inverse Gaussian Distributions and Stochastic Volatility Modelling. Scandinavian Journal of Statistics, 24, 1-14.
  • Barone-Adesi, G. Bourgoin, F., and Giannopoulus, K., Don’t look back. Risk, 1998, 11, 100-103.
  • Barone-Adesi, G., Giannopoulus, K. and Vosper, L., VaR without correlations for portfolios of derivative securities. Journal of Futures Markets, 1999, 19, 583-602.
  • Barone-Adesi, G., Giannopoulos, K. and Vosper, L., Backtesting derivative portfolios with filtered historical simulation (FHS). European Financial Management, 2002, 8(1), 31-58.
  • Basel Committee on Banking Supervision (2009). Revisions to the Basel II market risk framework. Basel, Switzerland: BIS.
  • Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307-327.
  • Braione, M., & Scholtes, N.K. (2016). Forecasting Value-at-Risk under different distributional Assumptions. Econometrics, 4(3).
  • Brooks, C., & Persand, G. (2003). Volatility forecasting for risk management. Journal of Forecasting, 22, 1-22.
  • Bubak, V. (2008). Value-at-Risk on Central and Eastern European stock markets: An empirical investigation using GARCH models. Institute of Economics Studies, Charles University, 18. https://www.econstor.eu/handle/10419/83344
  • Caporin, M. (2008). Evaluating Value-at-Risk measures in the presence of long memory conditional volatility. The Journal of Risk, 10(3), 79-110.
  • Christoffersen, P. (1998). Evaluating internal forecasting. International Economic Review, 39, 841-862.
  • Choi, P., & Nam, K. (2008). Asymmetric and leptokurtic distribution for heteroscedastic asset returns: the SU-normal distribution. Journal of Empirical finance, 15(1), 41-63.
  • Corlu, C.G., Meterelliyoz, M., & Tinic¸, M. (2016). Empirical distributions of daily equity index returns: A comparison. Expert System with Applications, 54, 170-192.
  • Degiannakis, S., & Potamia, A. (2017). Multiple-days-ahead value-at-risk and expected shortfall forecasting for stock indices, commodities and exchange rates: Inter-day versus Intra-day data. International Review of Financial Analysis, 49, 176-190.
  • Degiannakis, S., Dent, P., & Floros, C. (2013). Forecasting Value-at-Risk and Expected Shortfall using Fractionally Integrated Models of Conditional Volatility: International Evidence. International Review of Financial Analysis, 27, 21-33.
  • Dendramis, Y., Spungin, G.E., & Tzavalis, E. (2014). Forecasting VaR models under different volatility processes and distributions of return innovations. Journal of Forecasting, 33, 515-531.
  • Diamandis, P.F., Drakos, A.A., Kouretas, G.P., & Zarangas, L. (2011). Value-at-Risk for long and short trading positions: Evidence from developed and emerging equity markets. International Review of Financial Analysis, 20, 165-176.
  • Diebold, F.X., & Mariano, R. S. (1995). Comparing predictive accuracy. Journal of Business and Economic Statistics, 13(3), 253-263.
  • Ding, Z., Granger, C.W.J., & Engle, R.F. (1993). A long memory property of stock market returns and a new model. Journal of Empirical Finance, 1, 83-106.
  • El Babsiri, M., & Zakoian, J.M. (2001). Contemporaneous asymmetry in GARCH processes. Journal of Econometrics, 101, 257-294
  • Engle R.F., & Manganelli, S. (2004). CAViaR: conditional autoregressive value at risk by regression quantiles. Journal of Business & Economic Statistics, 22, 367-381.
  • Ergun, A., & Jun, J. (2010). Time-varying higher-order conditional moments and forecasting ¨ intraday VaR and expected shortfall. Quarterly Review of Economics and Finance, 50, 264- 272.
  • Fernandez, C., & Steel, M. (1998). On bayesian modelling of fat tails and skewness. Journal of the American Statistical Association, 93(441), 359-371.
  • Gerlach, R., Chen, C.W.S., Lin, E.M.H., & Lee, W.C.W. (2011). Bayesian forecasting for financial risk management, pre and post the global financial crisis. Journal of Forecasting, 31(8), 661-687.
  • Giacomini, R., & Komunjer, I. (2005). Evaluation and combination of conditional quantile forecasts. Journal of Business and Economic Statistics, 23(4), 416-431.
  • Giacomini, R., & White, H. (2006). Tests of conditional predictive ability. Econometrica, 74(6), 1545-1578.
  • Giot, P., & Laurent, S. (2003a). Value-at-Risk for long and short trading positions. Journal of Applied Econometrics, 18, 641-664.
  • Giot, P., & Laurent, S. (2003b). Market risk in commodity markets: a VaR approach. Energy Economics, 25, 435-457.
  • Glosten, L., Jagannathan R., & Runkle, D. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. Journal of Finance, 48, 1779- 1801.
  • Hansen, B. (1994). Autorregressive conditional density estimation. International Economic Review, 35, 705-730.
  • Hansen, P.R., & Lunde, A. (2005). A forecast comparison of volatility models: does anything beat a GARCH(1,1)?. Journal of Applied Econometrics, 20(7), 873-889.
  • Hansen P.R., Lunde A., & Nason, J.M. (2011). The model confidence set. Econometrica, 79(2), 453-497.
  • Hentschel, L. (1995). All in the family nesting symmetric and asymmetric GARCH models. Journal of Financial Economics, 39, 71-104.
  • Hull, J., & White, A. (1998). Incorporating volatility updating into the historical simulation method for value-at-risk. Journal of Risk, 1(1), 5-19.
  • Johnson, N.L. (1949). Systems of frequency curves generated by methods of translations. Biometrika, 36, 149-176.
  • Kang, S.H., & Yong S-M. (2009). Value-at-Risk analysis for Asian emerging markets: asymmetry and fat tails in returns innovation. The Korean Economic Review, 25, 387-411.
  • Kuester, K., Mittnik, S., & Paolella, M.S. (2006). Value-at-risk prediction: A comparison of alternative strategies. Journal of Financial Econometrics, 4(1), 53-89.
  • Kupiec, P. (1995). Techniques for verifying the accuracy of risk measurement models. Journal of Derivatives, 2, 174-184.
  • Lambert, P., & Laurent, S. (2001). Modelling financial time series using GARCH-type models with a skewed student distribution for the innovations. Mimeo, Université de Liege.
  • Leccadito, A., Boffelli, S., & Urga, G. (2014). Evaluating the accuracy of value-at-risk forecasts: New multilevel tests. International Journal of Forecasting, 30, 206-216.
  • Lee, C.F., & Su, J.B. (2015). Value-at-Risk estimation via a semi-parametric approach: Evidence from the stock markets. Handbook of Financial Econometrics and Statistics. Springer Science Business Media: New York.
  • Li, M. Y., & Lin, H. W. W. (2004). Estimating value-at-risk via Markov switching ARCH models - an empirical study on stock index returns. Applied Economics Letters, 11(11), 679- 691.
  • Lopez, J.A. (1998). Testing your risk tests. Financial Survey (May-Jun), 18-20.
  • Lopez, J.A. (1999). Methods for evaluating Value-at-Risk estimates. Federal Reserve Bank of San Francisco Economic Review, 2, 3-17.
  • Lopez, J.A., & Walter, C.A. (2000). Evaluating covariance matrix forecasts in a Value-atRisk framework. http://dx.doi.org/10.2139/ssrn.305279
  • Louzis, D.P., Xanthopoulos-Sisinis, S., & Refenes, A.P. (2014). Realized volatility models and alternative Value-at-Risk prediction strategies. Economic Modelling, 40, 101-116.
  • Mabrouk, S., & Saadi, S. (2012). Parametric Value-at-Risk analysis: Evidence from stock indexes. The Quarterly Review of Economics and Finance, 52, 305-321.
  • McDonald, J. B., & Newey, W. K. (1988). Partially adaptive estimation of regression models via the generalized t distribution. Econometric theory, 4(3), 428-457.
  • McMillan, D.G., & Kambourodis, D. (2009) Are RiskMetrics forecasts good enough? Evidence from 31 stock markets. International Review of Financial Analysis, 18, 117-124.
  • Mittnik, S., & Paolella, M.S. (2000). Prediction of financial downside-risk with heavy-tailed Conditional Distributions. http://dx.doi.org/10.2139/ssrn.391261
  • Novales, A., & Garcia-Jorcano, L. (2018). Backtesting extreme value theory models of expected shortfall. Quantitative Finance, 1-27. DOI: 10.1080/14697688.2018.1535182
  • Nelson, D.B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica, 59(2), 347-370.
  • Nieto, M.R., & Ruiz, E. (2016). Frontiers in VaR forecasting and backtesting. International Journal of Forecasting, 32, 475-501.
  • Ozun, A., Cifter, A., & Yilmazer, S. (2010). Filtered extreme-value theory for value-at-risk estimation: evidence from Turkey. The Journal of Risk Finance, 11(2), 164-179.
  • Paolella, M. (1997). Tail estimation and conditional modeling of heteroskedstic time-series. Ph.D Thesis, Institute of Statistics and Econometrics, Christian Albrechts University of Kiel.
  • Polanski, A., & Stoja, E. (2010). Incorporating higher moments into value-at-risk forecasting. Journal of Forecasting, 29, 523-535.
  • Radovanov, B., & Marcikic, A. (2014). A comparison of four different block bootstrap methods. Croatian Operational Research Review, 5(2), 189-202.
  • Romano, J.P., & Wolf, M. (2005). Stepwise multiple testing as formalized data snooping. Econometrica, 73(4), 1237-1282.
  • Sarma, M., Thomas, S., & Shah, A. (2003). Selection of value at risk models. Journal of Forecasting, 22, 337-358.
  • Schwert, W. (1990). Stock volatility and the crash of ’87. Review of Financial Studies, 3, 77-102.
  • So, M.K.P., & Yu, P.L.H. (2006). Empirical analysis of GARCH models in value at risk estimation. Journal of International Financial Markets, Institutions and Money, 16, 180-197.
  • Tang, T.L., & Shieh, S.J. (2006). Long Memory in stock index futures markets: A value-atrisk approach. Physica A, 366, 437-448.
  • Taylor, S.J. (1986). Modelling Financial Time Series. John Wiley and Sons, Inc.
  • Theodossiou, P. (1998). Financial data and skewed generalized t distribution. Management Science, 44, 1650-1661.
  • Theodossiou, P. (2001). Skewness and kurtosis in financial data and the pricing of options. Working Paper. Rutgers University
  • Tu, A.H., Wong, W.K., & Chang, M.C. (2008). Value-at-Risk long and short positions of Asian stock markets. International Research Journal of Finance and Economics, 22, 135- 143.