Sustitucion del conducto biliar mediante tubos tridimensionales de biomaterial de colágeno/agarosa. Estudio funcional experimental

  1. PÉREZ ALONSO, ALEJANDRO JOSÉ
Dirigida por:
  1. Pablo Torné Poyatos Director/a

Universidad de defensa: Universidad de Granada

Fecha de defensa: 25 de julio de 2014

Tribunal:
  1. J. A. Rodríguez Montes Presidente/a
  2. Manuel López Cantarero Secretario/a
  3. José Antonio Ferrón Orihuela Vocal
  4. Juan A. Asensio Vocal
  5. Manuel Hidalgo Pascual Vocal

Tipo: Tesis

Resumen

SUSTITUCIÓN DEL CONDUCTO BILIAR MEDIANTE TUBOS TRIDIMENSIONALES DE BIOMATERIAL DE COLAGENO/AGAROSA. ESTUDIO FUNCIONAL EXPERIMENTAL. Introducción En la actualidad el tratamiento de las vías biliares extrahepáticas afectadas por cáncer, estenosis, lesiones iatrogénicas y otras patologías consiste en la resección de las mismas, y una anastomosis en los casos mas graves de la placa hilar biliar al intestino delgado. esta técnica, en muchos casos tiene un transcurso dificultado por infecciones retrogradas de la vía biliar través de los patógenos que ascienden del intestino, o debido a complicaciones como la estenosis de la anastomosis, que requieren una nueva intervención para rehacer la técnica quirúrgica. en menor numero de caso, el estancamiento de las secreciones biliares y la dificultad para el flujo de la bilis, requerirán un trasplante hepático incluso en aquellos casos en los que únicamente la porción afectada es extrahepática. en aquellos receptores de injertos hepáticos, puede ocurrir en el seno de un rechazo crónico una nueva estenosis de la anastomosis biliar, requiriendo de este modo un retrasplante. Si pudiéramos obtener un tubo artificial que funcionara morfológica e histológicamente de la misma manera que la vía biliar nativa, podría utilizarse como sustituto de las vías biliares patológicas, evitando de este modo complejas técnicas quirúrgicas que dificultan el paso de la bilis y, finalmente, evitando el transplante hepático en aquellas enfermedades en las que el parénquima hepático se encuentra indemne. nuestro grupo esta desarrollando, basado en esta idea y gracias a las nuevas biotecnologías, un conducto artificial que mantiene las propiedades morfológicas, histológicas y funcionales de la vía biliar nativa. en la bibliografía actual existen pocas referencias a conductos artificiales creados para sustituir vías biliares patológicas, algunas con la ayuda de biopolimeros y otras con la de estructuras histológicas de otra índole. hasta el momento , estas o bien no presentan una biocompatibilidad suficiente para permitir el flujo de la bilis (biopolimeros), o bien no se integran histológicamente en el ambiente (intestino, vasos sanguíneos). En cuanto hemos tenido las técnicas suficientes para obtener colágeno y poder moldearlo a nuestro antojo, nuestro equipo modificó una estructura tridimensional tubular de colágeno bovino, cubierta por hidrogenes, totalmente biocompatible. Material y Método Se construyeron tubos tridimensionales de colágeno de 4 mm de diametro y 1 mm de grosor de la pared. el tamaño de los poros formados es de 200 nm. Posteriormente se recubrieron todas sus superficies con hidrogel de agarosa al 2%. Para su almacenamiento se emplearon estufas a 37ºC. Implantación del conducto del conducto artificial en los animales de experimentación: se implantó el conducto a 40 cobayas de la raza Dunkin Hartley con un peso aproximado de 1 kg +/- 200 gr. en todas ellas se sustituyó la vía biliar extrahepática en la porción comprendida entre la inserción del conducto ciático y la ampolla de Vater. Para la intervención se realizó una incisión subcostal derecha para acceder directamente a las vías biliares. realizando una inducción anestésica con 20 mg/kg de ketamina, y manteniendo una infusión continua de propofol a razón de 0,2 mg/kg/min. Una vez identificado el conducto común hepático en el interior del ligamento hepatoyeyunal, se realizó una sección circunferencias por debajo de la inserción del conducto ciático. A este nivel se interpuso la prótesis de colágeno/agarosa con la ayuda de materiales de sutura de acido polifacético de reabsorción lenta a través del microscopio quirúrgico. Los animales de experimentación se estabularon según la normativa vigente. Durante los primeros 7 días postoperatorios se administro por vía subcutánea analgesia y antibioterapia. Estudio bioquímico y funcional: Los animales fueron sacrificados a las 4 semanas, 3 meses y 6 meses tras la sustitución del conducto biliar. Tras el sacrificio se realizo estudio histológico de las biopsias hepáticas mediante tintines de hematoxilina-eosina. Del mismo modo, los sujetos de investigación fueron sometidos a análisis biométricos y bioquímicos, junto con exploraciones radiológicas de la intervención sobre la vía biliar. Todos los resultados obtenidos fueron comparados con con los especímenes y muestras obtenidos de 10 cobayas control. Resultados Todos los animales de experimentación sobrevivieron hasta el momento de su sacrificio tras la implantación del conducto artificial. Se desarrollaron fisiológicamente, ganancia de peso y tamaño, de forma similar a los animales control (1,9kg+/- 200g). En todos los grupos se realizó una medición de los niveles sanguíneos de bilirrubina y enzimas hepáticas tras el sacrificio, obteniendo niveles normales en los 40 animales intervenidos. Macroscópicamente todos los conductos artificiales implantados parecían completamente degradados a partir de las 4 semanas, aunque persistían adherencias y ligera inflamación de los tejidos adyacentes. Los especímenes extraídos a partir de los 3 meses se encontraban completamente reabsorbidos, y el aspecto era comparable al de la vía biliar nativa, persistiendo ligeras adherencias de los tejidos circundantes. El aspecto macroscópico del hígado era completamente normal, sin observarse signos de cirrosis. Discusión El conducto tridimensional implantado se integra biológica y fisiológicamente dentro de la vía biliar, manteniendo las funciones de conducción de la bilis y evitando técnicas con morbimortalidad elevada, así como costes sanitarios altos. Las integración tisular que se produce a partir de las 4 semanas lleva a pensar que el conducto sirve de estructura para la regeneración a conducto biliar nativo. Podríamos deducir múltiples aplicaciones que pueden desarrollarse en la clínica actual. Ante la presencia de estenosis o afecciones cancerígenas propias de la vía biliar extrahepática, estos segmentos pueden ser extirpados u sustituidos por el conducto artificial mediante anastomosis término-terminales. De este modo podemos preservar la papila de Vater, manteniendo las funciones biológicas de esta válvula, evitando infecciones retrógradas que ocurren en las anastomosis biliodigestivas. Si nuestro proyecto llega a ser factible, la disponibilidad en todo momento de un neoconducto biliar puede evitar derivaciones con grandes riesgos y ser utilizadas en multitud de técnicas que necesiten la extirpación de segmentos de conductos biliares, evitado las complicaciones derivadas, y finalmente, el trasplante. Podemos pensar que nuestra prótesis se ha integrado correctamente si no aparecen complicaciones tras su implantación. No debemos observar signos o síntomas derivados de la obstrucción al flujo de la bilis producidos por una estenosis del conducto, así como tampoco observar signos que nos hagan pensar en la presencia de una fuga de bilis intraabdominal, debido a dehiscencias o puntos de fuga en las anastomosis. Ninguna de estas complicaciones estuvo presente en nuestros casos. La función favorable que hemos observado en os neoconductos formados en los periodos estudiados nos sugiere que estos injertos podrían ser aplicables a la práctica clínica. Algunos autores han publicado recientemente el exitoso resultado en la formación de órganos artificiales como los vasos sanguíneos y el intestino delgado, mediante cultivos celulares. Este principio ha sido utilizado por algunos autores como Rosen et al. para facilitar la reconstrucción de partes de la circunferencia del conducto biliar mediante el uso de submucosa intestinal, a partir de la cual se producía la reepitelización. El examen macroscópico mostró que a partir de las 4 semanas, nuestro conducto biocompatible era completamente similar morfológicamente a la vía biliar nativa. Nuestro tubo tridimensional de colágeno implantado en los animales de experimentación adquirió una función y forma similares a la de la vía biliar nativa a partir de las 4 semanas tras el injerto. La creación de un neoconducto biliar nos abre nuevas vías terapéuticas para el tratamiento de afecciones confinadas a la vía biliar extrahepática, evitando complejas técnicas quirúrgicas con elevados costes socioeconómicos y alta morbimortalidad. Si en estudios futuros se demuestra la viabilidad a largo plazo de esta prótesis, nuestro conducto tendrá indudablemente una gran aplicación clínica. Visto Bueno Director de la Tesis Doctorando PABLO JUAN TORNE POYATOS ALEJANDRO J. PEREZ ALONSO REPAIRMENT OF EXTRAHEPATIC BILE DUCTS USING THREE DIMENSIONAL COLLAGEN/AGAROSE TUBES. EXPERIMENTAL FUNCTIONAL STUDY. Introduction ¿ Currently the surgical treatment of extrahepatic bile ducts affected by different conditions such as cancer, stenosis, iatrogenic injuries and other diseases is based in the excision, and in severe cases, the anastomosis of biliary hiliar plate to the small intestine is necessary. This technique may have a difficult course due to the retrograde infections of the gallbladder through the intestinal pathogens, or due to complications such as stenosis of the anastomotic area requiring reoperation. In other cases, the block of bile secretions, or the presence of a difficult flow of bile will require liver transplantation even in those cases where the affected portion is only extrahepatic. Patients receiving liver grafts may suffer a stenosis of the bladder anastomosis within the context of a chronic rejection, requiring retransplantation. The design of an artificial tube morphologically and histologically similar to the native bile duct would be interesting to be used as a substitute for pathologic biliary tract, thus avoiding complex surgical techniques that may block the flow of bile, and hipothetically avoiding liver transplantation in those diseases in which the liver parenchyma is undamaged. Based on this idea and supported by new biotechnologies, our research group is developing a tube graft that maintains the morphological, and functional characteristics of native bile duct. ¿ In the current literature few works about artificial canals to replace pathologic bile ducts, some of them based on biopolymers, and others based on other histological structures have been published. Issues associated with the artificial canals developed included the presence of insufficient biocompatibility to permit the flow of bile (biopolymers) and the inadequate histological integration in the environment (intestine, blood vessels). The current work presents the results of a modified tubular three-dimensional structure of bovine collagen, covered by biocompatible hydrogels, designed by our team. These new constructs were transplanted into experimental animals (guinea pigs) replacing the native bile duct. Biochemical and physiological functionalities were assessed. Material and methods ¿Substitute biliary tubes: Three-dimensional collagen tubes were constructed measured 4 mm in diameter and 1 mm wall thickness. The size of the pores was 200 nm. Subsequently all surfaces were coated with 2% agarose hydrogel, in order to avoid bile leaks through the pores. Heaters at 37 ° C were used for storage. Transplantation in experimental animals: the construct was transplanted to 40 guinea pigs weighing approximately 1 kg + / - 200 gr. In all of the experimental animals, the common bile duct was replaced in the portion between the insertion of the cystic duct and ampulla of Vater. For the intervention a right subcostal incision was performed for direct access to the biliary tract, with an anesthetic induction (20 mg / kg of ketamine) and a maintenance phase (continuous infusion of propofol at 0.2 mg / kg / min). After identifying the common hepatic duct inside the hepatoduodenal ligament, a circumferential section was performed below of the insertion of the cystic duct. At this level the collagen prosthesis was interposed using a slow-resorption poly-lactic acid suture. All the experimental animals survived up to their sacrifices at 7 days (Group 1, 13 guinea pigs), 15 days (Group 2, 13 guinea pigs) or 45 days (Group 3, 14 guinea pigs) after transplantation. Results¿¿ After implantation of the artificial canal all experimental animals survived until the time of sacrifice (7 days, 15 days, 45 days). All the experimental animals were similar to control animals regarding physiological development, weight gain and size. A measurement of blood levels of bilirubin and liver enzymes were performed after sacrifice and normal levels were obtained in the 40 animals and in the 10 controls. ¿Macroscopic study of the neo-bile duct: In 4 weeks, all implanted artificial constructs appeared completely degraded, but persistent adhesions and slight inflammation of adjacent tissues were observed. At 3 months, specimens were completely resorbed, and the appearance was comparable to the native bile duct, persisting slight adhesions of the surrounding tissues. The gross appearance of the liver was completely normal, without signs of cirrhosis. H & E microscopic study: In all cases, the liver tissue did not suffer any alteration, with no presence of stasis or biliary cirrhosis. Discussion¿¿ Our transplanted three-dimensional construct integrates into the bile duct morphologically and physiologically, maintaining the functions of bile and avoiding high morbidity techniques as well as high health costs. The tissue integration that occurs after 4 weeks, suggests that the construct serves as a structure for regeneration from distal and proximal native bladder tissues. Multiple applications can be developed using these constructs: In the presence of stenosis or extrahepatic bile duct cancers, these segments can be removed and replaced by this artificial duct through anastomotic sutures. Thus, the papilla of Vater may be preserved, keeping the biological functions of this valve and preventing retrograde infections which are common in biliodigestive anastomosis. If our project proves to be feasible, availability of a neo-conduct may avoid biliary derivations with high risks and morbidity. Furthermore it may be used in multiple techniques in which multiple removals of bile duct segments are required, avoiding complications and finally transplantation. We think that our prosthesis is integrated properly as long as no complications after implantation are observed. Signs or symptoms resulting from obstruction of bile flow produced by a stenosis, signs that suggest the presence of intra-abdominal bile leak due to dehiscence or leaks in the anastomosis may indicate that the technique has not been performed properly. None of these complications was present in our cases. The positive outcomes that we observed in the artificial duct during the study period, suggest that these grafts could be applicable to clinical practice. Some authors have recently published the successful results in the formation of artificial organs such as blood vessels and small intestine, using cell cultures. This principle has been used by some authors such as Rosen et al. to facilitate reconstruction of parts of the circumference of the bile duct through the use of intestinal submucosa, from which the reepithelialization is produced. In our cases the re-epithelialization occurs from the ends of artificial duct, extending all the way along through the cell migration which it is allowed by the pores of the three dimensional structure forming collagen. The rate of re-epithelialization was similar in both ends. This fact allows their use in a greater number of clinical indications and makes the technique easier. Broadly speaking, we could say that the presence of bile pluripotent cells are viable and they may differentiate into epithelial cells uniformly, migrating through the implanted construct. However, more histological studies are warranted to confirm our results. Gross examination showed that after 4 weeks, our construct was completely biocompatible and morphologically similar to the native bile duct. The histological test and immunohistochemical techniques showed that the new tissue was histologically similar to the native one, with a similar antigen expression. In the new created environment, the bile flowed through into the duodenum with no blocking. Through our research we were not able to determine what factors stimulate cell differentiation and reepithelialization, and whether these factors are from components in the bile or they reach the area by chemotaxis. ¿ Our three-dimensional collagen tube transplanted into experimental animals developed a similar structure and functions to the native bile duct from the 4 weeks after grafting. The creation of a biliary neo-conduct opens new therapeutic avenues for the treatment of disease confined to the extrahepatic bile duct, avoiding complex surgical techniques with high socioeconomic costs and mortality. If future studies confirm the long-term viability of this prosthesis, our construct will certainly be of great clinical application. These could be focalized in the identification of the biliary tract progenitor cells; or even using porcine models or other experimental animals of bigger size and human-like anatomy in order to study long-term effects. Visto Bueno Director de la Tesis Doctorando PABLO JUAN TORNE POYATOS ALEJANDRO J. PEREZ ALONSO BIBLIOGRAFÍA CONSULTADA Anatomia Humana descriptiva, topografica y functional. H. Rouviere, A. Delmas. Duodecima edicion. Ed. Masson 2010. Barcelona. Anatomia Humana. Francisco Orts LLorca. Quinta Edicion. Editorial Cientifico-Médica. Madrid. Atlas de Anatomia Humana. Frank H. Netter. Cuarta edicion. Ed. Masson 2010. Barcelona. Histología. Texto y atlas color con biologia cellular y molecular. Quintra edicion. Ross, Pawlina. Ed. Panamericana 2013. Atlas de histologia y organografía microscopic. Jesus Boya Vegue. Ed. Panamericana 2012. Histology for pathologists, second edition. Edited by Stephen S. Stemberg. Lippincott-Raven Publishers, Philadelphia 1997. Tratado de fisiología médica. Guyton & Hall. Decima edicion. Ed. Mc Graw-Hill Interamericana 2009. Madrid. Changing the culture of cholecistectomy. Strasberg. J AM Coll Surg 2000; 201:604-11. Cirugia biliuopancreatica. D. Casanove, L. Fernandez-Cruz. Primera edicion. Editorial Arán 2009. Madrid. Cirugia AEC. Segunda edicion. P. Parrilla Paricio, J.L. Landa Garcia. Editorial medica Panamericana 2012. Medicina Interna. Farreras, Rozman. Decimoquinta Edicion.. Volumen I. Ed. Elsevier. Randomized trial of choledochocholedochostomy with or without a T tube in ortothopic liver transplantation. Scatton O, Boudjema K, et al. Service de Chirurgie, Hopital Cochin, Assistance Publique, Paris, France. Annals of surgery 2001 Mar; 233 (3): 432-7. Tissue engineering and cell based therapies, from the bench to the clinic: the potential to replace, repair and regenerate. Fodor, WL. Reprod Biol Endocrinol 2003; 1:102. Reconstruccion de tejidos y órganos utilizando la ingeniería tisular. Falke GF, Atala A. Arch Argent Pediat 2000; 98(2):103-114. Tissue engineering and biomaterials in regenerative medicine. Nolan K, Millet Y, Ricard C, Stabler CL. Cell transplant 2008; 17(3):241-3. The emerging field of cell and tissue engineering. Park DH, Borlogan CV, Eve DJ, Sandberg PR. Med Sci Monit 2008 Nov 14; (11):RA 206-20. Cell engineering: spearheading the next generation in healthcare. Jayasinghe SN. Biomed Mater 2008 Sep; 3(3). Challenginf in tissue engineering. Ikada Y. J R Soc Interface 2006; 4(10): 589-601. A tissue-engineered artificial bile duct grown to resemble the native bile duct. American journal of transplantation 2005;5:1541-1547. Nanotechnology for cancer diagnostic: promises and challenges. Gradzinski P, Silver M, Molnan LK. Expert Rev Mol Diag 2006; 6(3): 307-18 Potential of nanofiber matrix a tissue engineering scaffolds. Ma Z, Kotaki M, Inai R, Ramkrishna S. Tissue Eng 2005;11(1-2):101-9. The design os scaffolds for use in tissue engineering. Part I. Young S, Laong K, Du Z. Tissue Eng 2001, 7(6):679-89. An introduction to biodegradable materials for tissue engineering applications. Ann Acad Med Singapore 2001; 30:183-91. Tissue engineering in plastic reconstructive surgery. Walgenbach RJ, Voigt M, Andree. 2001, 263:372-8. Principles of tissue engineering. Kwan MD, Wan MC, Longaker MT. Skeletal. Tissue engineering 3rd Edition; 62, 932-4 p 935. Repair of critical size defect in the rat mandibule using allogenC type I collagen. Saadeh PB, Rhosla RK, Mehrara BJ. J Craneofac Surg 2001; 12:573-79. Chitosan: potential use as bioactive coating for orthopaedic and craniofacial/dental implants. Bumgardner JD, Wiser R, Gerard PD. J biomater sci Polym 2003; 14(5), 423-38. Chitosan sponges as tissue engineering scaffolds for bone formation. Seol Y, Lee JY, Park YJ. Biotechnol Lett 2004; 26 (13):1033-41. Treatment of osteochondral defect with autólogas bone narrow in a hyaluronian-based delivery vehicle. Scholaga LA, Gao J, dennis JE. Tissue Eng 2002 8(2):333-47. Asessment of stem cell/biomaterial combinations for stem cell-based tissue engineering. Neuss S, Apel C, Buttler P. Biomater 2008;29:302-13. Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. J Biomed Mater Res 1997; 36 (1):17-28. Synthetic biodegradable polymers for orthopaedic applications. Behravesh E, Yasko AW, Engel PS. Clin Orthop Relat Res 1999; 367(5):118-29. The use of fibrin and polylactic acid hybrid scaffold for articular cartilage use. Munirah S, Kim SH, Ruszimah BH. Eur Cell Mater 2008; 21(15): 41-52. Principios de bioquimica. Lehninger. Ediciones Omega 2010. Barcelona. The use of porcine Organotypic cornea construct for permeation studies from formulations containing befunolol hydrochloride. Reichl S, Muller-Guymann CC. Int J Pharm 2003; 250, 191-201. Large surface of cultured human epithelium obtained on a dermal matrix based on live fibroblast containing fibrin gels. Meana A, Iglesias J, Del Rio M. Burns 1998; 24, 621-630. Direct patterning of mammalian cells onto porous tissue engineering substrates using agarose stamps. Stevens MM, Mayer M, Anderson Dg. Biomaterials 2005; 26 (36):7636-41. A histological and histochemical evaluation of human oral mucosa constructs developed by tissue engineering. Sanchez-Quevedo MC. Histol Histopathol 2007; 22:631-40. Small intestinal submucosa as a bioscaffold for biliary tract regeneration. Roscu M, Ponsky J. Surgery 2002; 132, 480-487. Tissue engineering of small diameter vascular grafts. Teebken OE, Haverich A. Eur J vasc Endovasc Surg 2002; 23, 475-485. Isolation and characterization of mouse hepatic stem cells in vitro. Weiss MC, Strick-Marchand H. Semin Liver Dis 2003; 23:313-324. Liver stem cells and development- gerber MA, Thung SN. Lab Invest 1993; 68:253-254. The need to develop artificial bile ducts. Shimono K, Nose Y. Artif Organs 1995; 19:115-116. Experiment for a polyurethane replacement of the common bile duct. XU, Sun Z, Zhang Q. Chin Med J 1998; 11:86-87. End-to-End anastomosis between tissue-engineered intestine and native small bowel. Rahaira S, Kim S. Tissue Eng 1999; 5:339-346. Regeneration of extrahepatic bile ducts by tissue engineering with a bioabsorvable polymer. Miyazawa M, Aikawa M, Okada K. J Artif organs 2012; 15:26-31. A novel treatment for bile duct injury with a tissue-engineered bioabsorvable polymer patch. Aikawa M, Miyazawa M, Okamoto K. Surgery 2009; 12:575-580. Histological and histochemical methods. Kiernan JA. Theory and practice 4th Edition by Scion Publishing limited 2008. Picrosirius stainig plus polarization microscopy, a specific method for collagen detection. Junquera LCV. Histochemical journal 1979; 11, 447-455. A procedure to prepare cultured cella in suspension for electron probe X-ray microanalysis: application to scanning and transmission microscopy. Fernandez-Segura E; Cañizares FJ, Cubero MA, Campos A. A. Journal of Microscopy 1999, 196(pt1):19-25. Routine or selected intraoperative cholangiography during laparoscopic cholecystectomy. Berci G, Sackier JM, Paz-Partlow M. American Journal Surgery 1991; 161: 365-60. Operative cholangiography in elective cholecystectomy. Pernthaler H, Sandbichler P, Schimd TH. British Journal Surgery 1990;77:390-400. Routine operative cholangiography. Mills JL, Beck OE. Surgical Gynecol Obstet 1986¿163:363-4. A requiem for the routine operative cholangiogram. Gerber A. Surg Gynecol Obstet 1987; 164:124-6. Manometria y debimetria en la cirugía de las vías biliares. Garrido Santo A, Varela de Ugarte A, Asension Perez M, Muñoz Serrano M. Cirugia Española 1983, 37(1):68-71. Selective operative cholangiography. Boyokowsky H, Slutzki S. Surg Gynecol Obstet 1987; 164:124-6. Operative cholangiography. Shively EH. American journal of Surgery 1990; 159:350-47. Selective use of intraoperative cholangiography. Greco L, gentile A. Minerva Gastroenterology 1995 (Sep):41(3): 223-6. Manual de estadística y Epidemiologia 2º Edicion. Eduardo Forcada, Jurado Ramon A, Ruiz Mateos B. Editorial Iceberg 2010. Madrid. Bioestadistica aplicada. Pardo y San Martin 1998. Editorial Masson. Pags 248-250. The age of biology: opportunities and challenges for laboratory animal medicine. Van Hooser G. Scand J Lab Anim Sci 1999; 26:176-84. Choosing the best animal species to mimic clinical anastomotic leakage in humans: a qualitive systematic review. Pommergaard HC, Rosenberg J, Scgumacher-Petersen C, Achiam M. Eur Surg Res 2011; 47:173-81. Based hydrogel as potential biopolymeric carrier for drug delivery and cell delivery systems. Present status and applications. Giri Tk, Thabur D, Alexander A, Ajazuddin, Badwaik H, Tipotteni. Curr Drug Deliv 2012; 9:539-55. Scaffold: a novel barrier for cell and drug delivery. Cit Rev Ther Drug Carrier Syst 2012; 29:1-63. Microencapsulation using vivrating technology. Whelelan M, Marson IW. Microencapsul 2011; 28:669-88. Itoh S, Takakuda K, Kawabata S et al. Evaluation of cross-linking procedures of collagen tubes used in peripheral nerve repair. Biomaterials 2002; 23: 4475-4481 Ishaug S.L., Crane G.M., Miller M.J., Yasko A.W., Yaszemski M.J., Mikos AG. Bone formation by three- dimension al stromal osteoblast culture in biodegradable polymer scaffolds. J Biomed Mater Res 1997; 36(1): 17- 28. Junquera LCU, Bignolas G and Brentani RR. Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochemical Journal 1979; 11: 447-455. Kwan M.D., Wan D.C., Longaker M.T. (2007). Principles of tissue engineering. Skeletal - tissue engineering. 3 rd . Edit. 62, 935- 44. p.935. Ma Z, Kotaki M, Inai R, Ramkrishna S. Potencial of nanofiber matrix a tissue engineering scaffolds. Tissue Eng 2005; 11(1-2): 101-9 Miyata t, Taira T, Noishiki Y. Collagen engineering for biomaterials use. Clin Mater 1992; 9: 139-148. Rapidly resorbable vs non resorbable suture for experimental colonic anastomosis in rats. A randomized experimental study. Klein M, Pommergaard HC, Gögeun I, Rosenberg J. Int J Surg 2011; 9:332-4. Factors affecting the degradation. Alexis F. polymer International 2005; 54:36-46. Mirizzi PL: La colangiografía durante las operaciones de las vías biliares. Bol Soc Cir (Arg) 1932;16:1133-5. Sackier JM, Berci G, Phillips E, Carroll B, Shapiro, S, Paz Partlow M: The role of cholangiography in laparoscopic cholecystectomy. Arch Surg 1991; 126:1021-5. Gregg RD : The case for selective cholangiography, AM J Surg 1988, 155:540-4. Shively EH: Operative cholangiography. Am J Surg. 1990; 159:350-4.7 Ammori BJ, Joseph S, Attia M, Lodge JP. Biliary strictures complicating pancreaticoduodenectomy. Int J Pancreatol 2000; 28:15¿21. Egawa H, Inomata Y, Uemoto S et al. Biliary anastomotic complicationsin 400 living related liver transplantations. World J Surg 2001; 25: 1300¿1307. Sugawara Y, Makuuchi M, Takayama T et al. Small-for-size grafts in living-related liver transplantation. J Am Coll Surg 2001; 192:510¿513. Halme L, Hockerstedt K, Lautenschlager I. Cytomegalovirus infection and development of biliary complications after liver transplantation. Transplantation 2003; 75: 1853¿1858. Rosen M, Ponsky J, Petras R, Fanning A, Brody F, Duperier F. Small intestinal submucosa as a bioscaffold for biliary tract regeneration. Surgery 2002; 132: 480¿487. Teebken OE, Haverich A. Tissue engineering of small diameter vascular grafts. Eur J Vasc Endovasc Surg 2002; 23: 475¿485. Shin¿oka T, Imai Y, Ikada Y. Transplantation of a tissue-engineered pulmonary artery. N Engl J Med 2001; 344: 532¿533. Kaihara S, Kim S, BenvenutoMet al. End-to-end anastomosis between tissue-engineered intestine and native small bowel. Tissue Eng 1999; 5: 339¿346. Perez A, Grikscheit TC, Blumberg RS, Ashley SW, Vacanti JP. Tissue-engineered small intestine: ontogeny of the immune system. Transplantation 2002; 74: 619¿623. Terai S, Yamamoto N, Omori K, Sakaida I, Okita K. A new cell therapy using bone marrow cells to repair damaged liver. J Gastroenterol 2002; 37: 162¿163. Vessey CJ, de la Hall PM. Hepatic stem cells: a review. Pathology 2001; 33: 130¿141. Watanabe M, Shin¿oka T, Tohyama S et al. Tissue-engineered vascular autograft: inferior vena cava replacement in a dog model. Tissue Eng 2001; 7: 429¿439. EI-Assmy A, Hafez AT, EI-Sherbiny MT et al. Use of single layer small intestinal submucosa for long segment ureteral replacement: a pilot study. J Urol 2004; 171: 1939¿1942. Noishiki Y, Tomizawa Y, Yamane Y, Matsumoto A. Autocrine angiogenic vascular prosthesis with bone marrow transplantation. Nat Med 1996; 2: 90¿93. Malhi H, Irani AN, Gagandeep S, Gupta S. Isolation of human progenitor liver epithelial cells with extensive replication capacity and differentiation into mature hepatocytes. J Cell Sci 2002; 115: 2679¿2688. Petersen BE, Bowen WC, Patrene KD et al. Bone marrow as a potential source of hepatic oval cells. Science. 1999; 284: 1168¿1170. Green JA, Carthew P, Heuilet E, Simpson JL, Manson MM. Cytokeratin expression during AFB1-induced carcinogenesis. Carcinogenesis 1990; 11: 1175¿1182. Gerber MA, Thung SN. Liver stem cells and development (editorial). Lab Invest 1993; 68: 253¿254. Weiss MC, Strick-Marchand H. Isolation and characterization of mouse hepatic stem cells in vitro. Semin Liver Dis 2003; 23: 313¿324. Azoulay D, Adam R ,Bhangui P, Andreani P, Salloum C, Karam V, Hoti E, Pascal G,, Samuel D, Ichai P, Saliba F, Castaing D. Short- and long-term liver trasplant morbidity: twuenty years of experience in a European Center. AP-HP Hôpital Paul Brousse, Centre Hépato-Biliaire, Villejuif, France. Am J Transplant. 2011 Jan; Masayasu Aikawa, Miyazawa, Okamoto, Toshimitsu, Akimato, Ueno, Koyama, Ikada. An extrahepatic Bile duct grafting using a bioabsorvable polymer tube. Journal of gastrointestinal Surgery. Volume 16, Number 3 (2012), 529-534. Masayasu Aikawa, Miyazawa, Okada, Toshimitsu, Okamoto, Akimoto, Koyama, Ikada. Development of a novel reflux-free bilioenteric anastomosis procedure by using a bioabsorvable polymer tube. Journal of hepatobiliary-pancreatic sciences. Volume 17, Number 3 (2010), 284-290. Miyazawa, Aikawa, Okada, Toshimitsu, Okamoto, Koyama, Ikada. Regeneration of extrahepatic bile ducts by tissue engineering with a bioabsorvable polymer. Journal of artificial organs. Volume 15, Number 1 (2012), 26-31. Li Q, Tao L, Chen B, Ren H, Hou X, Zhou S, Zhou J, Sun X, Dai J, Ding Y. Extrahepatic bile duct regeneration in pigs using collagen scaffolds loaded with human collagen-binding bFGF. Biomaterials. 2012 Jun; 33(17): 4298-308. Masayasu Aikawa, Miyazawa, Okamoto, Toshimitsu, Torii, Okada, Akimoto, Ohtani, koyama, Ikada. A novel treatment for bile duct injury with a tissue-engineered bioabsorvable polymer patch. Surgery 2010 (April): 575-580. Lillemoe KD, Melton GB, Cameron JL, Pitt HA, Campbell KA, Talamini MA, et al. Postoperative bile duct strictures: management and outcome in the 1990s. Ann Surg. 2000;232:430¿441 Shah SA, Grant DR, McGilvray ID, Greig PD, Selzner M, Lilly LB, et al. Biliary strictures in 130 consecutive right lobe living donor liver transplant recipients: results of a Western center. Am J Transplant. 2007;7:161¿167 Feller RB, Waugh RC, Selby WS, Dolan PM, Sheil AG, McCaughan GW. Biliary strictures after liver transplantation: clinical picture, correlates and outcomes. J Gastroenterol Hepatol. 1996;11:21¿25 Judah JR, Draganov PV. Endoscopic therapy of benign biliary strictures. World J Gastroenterol. 2007;13:3531¿3539 Lillemoe KD, Pitt HA, Cameron JL. Current management of benign bile duct strictures. Adv Surg. 1992;25:119¿174 Lopez RR, Cosenza CA, Lois J, Hoffman AL, Sher LS, Noguchi H, et al. Long-term results of metallic stents for benign biliary strictures. Arch Surg. 2001;136:664¿669 Hakamada K, Sasaki M, Endoh M, Itoh T, Morita T, Konn M. Late development of bile duct cancer after sphincteroplasty: a ten- to twenty-two-year follow-up study. Surgery. 1997;121:488¿492 Maghsoudi H, Garadaghi A, Jafary GA. Biliary peritonitis requiring reoperation after removal of T-tubes from the common bile duct. Am J Surg. 2005;190:430¿433 Tang CN, Tai CK, Ha JP, Tsui KK, Wong DC, Li MK. Antegrade biliary stenting versus T-tube drainage after laparoscopic choledochotomy¿a comparative cohort study. Hepatogastroenterology. 2006;53:330¿334. Gharaibeh KI, Heiss HA. Biliary leakage following T-tube removal. Int Surg. 2000;85:57¿63 Maeda A, Yokoi S, Kunou T, Saeki S, Murata T, Niinomi N, et al. Bile duct cancer developing 21 years after choledochoduodenostomy. Dig Surg. 2003;20:331¿334 Herba MJ, Casola G, Bret PM, Lough J, Hampson LG. Cholangiocarcinoma as a late complication of choledochoenteric anastomoses. AJR Am J Roentgenol. 1986;147:513¿515 Bettschart V, Clayton RA, Parks RW, Garden OJ, Bellamy CO. Cholangiocarcinoma arising after biliary-enteric drainage procedures for benign disease. Gut. 2002;51:128¿129 Tocchi A, Mazzoni G, Liotta G, Lepre L, Cassini D, Miccini M. Late development of bile duct cancer in patients who had biliary-enteric drainage for benign disease: a follow-up study of more than 1,000 patients. Ann Surg. 2001;234:210¿214 Kurumado K, Nagai T, Kondo Y, Abe H. Long-term observations on morphological changes of choledochal epithelium after choledochoenterostomy in rats. Dig Dis Sci. 1994;39:809¿820 Miyazawa M, Torii T, Toshimitsu Y, Koyama I, Ikada Y. A tissue-engineered artificial bile duct grown to resemble the native bile duct. Am J Transplant. 2005;5:1541¿1547 Bandura WP, Arbulu A. Experimental replacement of the common bile duct with Teflon graft. Am Surg. 1961;27:518¿524 Christensen M, Laursen HB, Rokkjaer M, Jensen PF, Yasuda Y, Mortensen FV. Reconstruction of the common bile duct by a vascular prosthetic graft: an experimental study in pigs. J Hepatobiliary Pancreat Surg. 2005;12:231¿234 Mendelowitz DS, Beal JM. Expanded polytetrafluoroethylene in reconstruction of the canine biliary system. Am J Surg. 1982;143:221¿224 Bottger T, Mann B, Pickel B, Weber W, Sorger K, Junginger T. Animal experiment studies of pedicled small intestine transplantation as partial extrahepatic bile duct replacement. Langenbecks Arch Chir. 1991;376:77¿84 Belzer FO, Watts JM, Ross HB, Dunphy JE. Auto-reconstruction of the common bile duct after venous patch graft. Ann Surg. 1965;162:346¿355 Aydin M, Bakir B, Kosem M, Kisli E, Genccelep M. Biliary tract reconstruction with autologous rectus sheath graft¿an experimental study. Hepatogastroenterology. 2005;52:1019¿1022 Gomez NA, Zapatier JA, Vargas PE. Re: ¿Small intestinal submucosa as a bioscaffold for biliary tract regeneration¿. Surgery. 2004;135:460 El-Assmy A, Hafez AT, El-Sherbiny MT, El-Hamid MA, Mohsen T, Nour EM, et al. Use of single layer small intestinal submucosa for long segment ureteral replacement: a pilot study. J Urol. 2004;171:1939¿1942. Behravesh E., Yasko A.W., Engel P.S., Mikos A.G. Synthetic biodegradable polymers for orthopaedic applications. Clin Orthop Relat Res 1999; 367(S): 118-29. Bianchi G, Muraglia A, Daga A, Corte G, Concedda R, Quarto R. Microenviroment and stem properties of bone marrow derived mesenchymal stem cell. Wound Rep Reg 2001; 9: 460-6. Bjerknes M, Chen H. Multipotential stem cells in adult mouse gastric epithelium. Am J Physiol Gastrointest Liver Physiol 2002; 283:767-777. Ciriza J, García-Ojeda ME. Expression of migration-related genes is progressively upregulated in murine Lineage-Sca-1+c-Kit+ population from the fetal to adult stages of development. Stem Cell Res Ther 2010 May 20;1(2):14. De Ugarte DA, Alfonso Z, Zuk PA, Elbarbary A, Zhu M, Ashjian P, Benhaim P, Hedrick MH and Fraser JK. Differential expression of stem cell mobilization - associated molecules on multi - lineage cells from adipose tissue and bone marrow. Immunol Lett 2003; 89: 267- 270. Donovan PJ, Gearhart J. The end of the beginning for pluripotent stem cells. Nature 2001; 414: 92-97. 70. Fodor WL. Tissue engineering and cell based therapies, from the bench to the clinic: the potential to replace, repair and regenerate. Reprod Biol Endocrinol 2003; 1: 102. Forbes SJ, Vig P, Poulsom R, Wright NA, Alison MR. Adult stem cell plasticity: new pathways of tissue regeneration become visible. Clin Sci (Lond) 2002 a; 103: 355-369. Flowers JL, Zucker KA, Graham SM et al: Laparoscopic cholangiography. Results and indications. Ann Surg., 1992:209,216. Grounds MD, Garrett KL, Lai MC, Wright WE, Beil harz MW. ldentification of muscle precursor cells in vivo by use of MyoD1 and myogenin probes. Cell Tiss Res 1992 ; 267: 99-104. Hutmacher D.W., Goh J.C., Teoh S.H. An introduction to biodegradable materials for tissue engineering applications, Ann Acad Med Singapore 2001; 30: 183- 91. Neuss S., Apel C., Buttler P., Denecke B., Dhanasingh A., Ding X., Grafahrend D., Groger A., Hemmrich K., Herr A., Jahnen- Dechent W., Mastitskaya S., Perez- Bouza A., Rosewick S., Salber J., Waltje M., Zenke M. Assessment of stem cell/biomaterial combinations for stem cell - based tissue engineering. Biomater 2008; 29: 302- 13. Nolan K, Millet Y, Ricard C, Stabler CL. Tissue engineering and biomaterials in regenerative medicine. Cell transplant 2008; 17(3): 241-3 Review. Park DH, Borlogan CV, Eve DJ, Sandberg PR. The emerging field of cell and tissue engineering. Med Sci Monit 2008 Nov; 14(11): RA 206-20. Rao M, Mattson MP. Stem cell and aging: expanding the possibilities. Mach Ageing Dev 2001; 122(7): 713-4 Saadeh P.B. Khosla R.K., Mehrara B.J., Steinbrech D.S., McCormick S.A., DeVore D.P., Longaker M.T. Repair of a critical size defect in the rat mandible using allogenic type I collagen. J Craniofac Surg 2001; 12: 573- 79. Schaffler A, Buchler C. Concise review: Adipose tissue- derived stromal cells- basic and clinical implications for novel cell- based therapies. Stem Cells 2007; 25: 818- 27. Seol Y.J., Lee J.Y., Park Y.J., Lee Y.M., Young - Ku, Rhyu I.C., Lee S.J., Han S.B., Chung C.P. Chitosan sponges as tissue engineering scaffolds for bone formation. Biotechnol Lett 2004; 26(13): 1037-41 Serrato D, Nieto-Aguilar R, Garzón I, Roda O, Campos A, Alaminos M. Evaluation of the histological architectural patterns of tissues generated by tissue engineering under different protocols of cryopreservation. Histology and Histopathology 2009; 24(12):1531-1540. Stevens MM, Mayer M, Anderson DG, Weibel DB, Whitesides GM, Langer R. Direct patterning of mammalian cells onto porous tissue engineering substrates using agarose stamps. Biomaterials 2005;26(36):7636-41 Stocum DL. Regenerative biology and engineering: strategies for tissue restoration. Wound Rep Reg 1998; 6: 276-290. Thowfeequ S, Myatt EJ, Tosh D. Transdifferentiation in developmental biology, disease, and in therapy. Dev Dyn. 2007 Dec; 236(12): 3208-17. Review Walgenbach K.J., Voigt M ., Riabikhin A.W., Andree C ., Schaefer D.J, Galla T.J. Tissue engineering in plastic reconstructive surgery 2001; 263: 372 - 8. Weisberg SP, McCann D, Desai M, Rosembaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003; 112: 1796- 1808. Weiss L. Histología. Ed. Ateneo. Madrid. 4º Edición, 1982. P 297-300. Yang S., Leong K., Du Z., Chua C. The design of scaffolds for use in tissue engineering: Part I. Traditional factors. Tissue Eng 2001 7(6): 679- 89 Connor S, Garden OJ. Bile duct injury in the era of laparoscopic cholecystectomy. Br J Surg 2006; 93: 158-68.