Interpretación sedimentaria de las calizas de crinoides del Carixiense Subbético

  1. Cristino José Dabrio González
  2. Dolores Polo
Aldizkaria:
Mediterránea: Serie de Estudios Geológicos

ISSN: 0212-4300

Argitalpen urtea: 1985

Zenbakia: 4

Orrialdeak: 55-77

Mota: Artikulua

Beste argitalpen batzuk: Mediterránea: Serie de Estudios Geológicos

Laburpena

The early Jurassic crinoidallimestones of central Subbetic Zone formed in shoals of a large shallow carbonate shelf placed in the inner part of the broad gulf that Thethys Ocean was at that time, next to the emergent Hesperic Massif. From the study of associations and sequences of sedimentary textures and structures, a general shallowing-upward sequence can be deduced. A tectonic control is assumed for this sequence and also for the regional paleobathimetric distribution. Two subfacies have been differentiated in the crinoidallimestones. The lower one corresponds to piles of sand waves that formed, migrated and degenerated periodically along with the tidal cycle. The reversion of flow is reflected in opposite-directed sets of cross bedding. However, most of the cross-bedded sets appear to be unidirectional due to the dominant tidal current; in this case, the subordinate current produces erosional surfaces and ripples or megaripples. As the dominant current sets again, reactivation of the sand wave takes place. A most typical tidal feature is the formation of bundles of calcarenitic laminae representing the avalanche under current action that alternate with a somewhat thicker pelmicrite laminae representing settling of fines from suspension during slack-water periods. The relative thickness of such an arrangement changes regularly during the active migration of the sand wave during springs tides. Low rates of migration at neap tides (degeneration stages of sand waves) result in wave and biogenic reworking. The internal structure of the upper subfacies consists of trough cross bedding and parallel lamination as a result of increasing wave effect upon the surface of the shoal that superimposes on the tidal currents. This assumption is supported by the higher variability of paleocurrent directions. A model of shallow carbonate shoal with tidal sand waves and megaripples of various types is proposed. It is assumed that the highest wave action ocurred along the SE margin of the shoal, facing the prevailing waves generated by storms, hurricanes and, probably, some of the diurnal winds. Calcarenite/oolite (?) bars are thought to have occurred along these areas shielding the shoal and giving a chance for the tidal features to form under limited wave reworking that resulted in wave ripples of various scales and orientation.

Erreferentzia bibliografikoak

  • ALLEN, J.R.L. 1980. Sand waves: a model of origin and internal structure. Sedim. Geol. 26, 281-328.
  • ALLEN, J .R.L. 1980. Large transverse bedforms and the characteristics of boundary layers in shallow-water environments. Sedimentology. 27, 317-323.
  • BALL, M.M. 1967. Carbonate sand bodies of Florida and the Bahamas. J. Sedim. Petrol. 37, 556-591.
  • BERNOULLI, D. y JENKYNS, M.G., 1974. Alpine mediterranean and central atlantic mesozoic facies in relation to the early evolution of the Tethys. En Dott R.H. y Shaver R.H. (ed.) Modern and Ancient Geosynclinal Sedimentation. S.E.P.M. Spec. Pub. n.o 19, 129-160.
  • BOERSMA, J.R. 1969. Internal structures of sorne tidal megaripples on a shoal in the Westerschelde estuary, The Netherlands. Geologie en Mijnbouw. 43, 451-461.
  • BOERSMA, J.R. y TERWINDT, J.H.J., 1981. Berms on an intertidal shoal: shape and interna! structure. Spec. Pub. Int. Ass. Sediment. 5, 39-49.
  • BOERSMA, J.R. y TERWINDT, J.H.J., 1981. Neap-spring tide sequences on intertidal shoal deposits in a mesotidal estuary. Sedimentology. 28, 151-170.
  • BOSSELLINI, A., 1984. Progradation geometries of carbonate platforms: examples from the Triassic of the Dolomites, Northern Italy. Sedimentology. 31, 1-24.
  • CASTON, V.N.D., 1972. Linear sand banks in southern North Sea. Sedimentology. 18, 63-78.
  • GARCÍA DUEÑAS, V. 1963. La Zona Subbética al norte de Granada. Tesis Doctoral Univ. de Granada (inédita).
  • GARCÍAHERNÁNDEZ, M., GONZÁLEZ DONOSO, J.M., LINARES, A., RIVAS, P. y VERA, J .A., 1976. Características ambientales del Lias Inferior y Medio de la Zona Sub bética y su significado en la interpretación general de la cordillera. Reunión sobre la Geodinámica de la Cordillera Bética y el Mar de Alborán. Granada. 125-157.
  • GARCÍA HERNÁNDEZ, M., RIVAS P. y VERA, J.A., 1979 a. El Lias infracarixiense en la Zona Subbética. Cuad. Geol. Univ. Granada. 10, 367-374.
  • GARCÍAHERNÁNDEZ, M., RIVAS, P. y VERA, J.A., 1979 b. El Carixiense en la Zona Subbética. Cuad. Geol. Univ. Granada. 10, 375-382.
  • HAMBLIN, A.P. y WALKER, R.G., 1979. Storm-dominated shelf deposits: the Fernie-Kootenay (Jurassic) transition, southern Rocky Mountains. Can. Jour. Earth Sci. 16, 1.673-1.690.
  • HINE, A.C., 1977. Lily Bank, Bank, Bahamas: history of an active oolite sand shoal. J. Sed. Petrol. 4 7, l. 5 54-1.581.
  • JENKYNS, H.C., 1971. Speculations on the genesis of crinoidallimestones in the Tethyan Jurassic. Geol. Runds. 60, 471-488.
  • JOHNSON, H.D., 1978. Shallow siliciclastic seas. En Reading, H.C. (ed.) Sedimentary environments and facies. Blackwell Sci. Pub. 557 p.
  • KNAUTH, L.P ., 1979. A model for the origin of chert in limestone. Geology. 7, 274-277.
  • KNAUTH, L.P. y EPSTEIN, S., 1976. Hydrogen and oxygen isotope ratios in nodular and bedded cherts. Geochim. Cosmochim Acta. 40, 1.095 - 1.108.
  • KOLODNY, Y., TARABOULOS, A. y FRIESLANDER, U., 1980. Participation of fresh water in chert diagenesis: evidence from oxygen isotopes and boron alpha-track mapping. Sedimentology, 27, 305-316.
  • KUMAR, N. y SANDERS, J.E., 1976. Characteristics of shoreface storm deposits: modern and ancient examples. J. Sed. Petrol. 46, 145-162.
  • LANGHORNE, D.N., 1982. A study of the dynamics of a marine sand wave. Sedimentology. 29, 571-594.
  • LINARES, A. y MOUTERDE, R., 1962. Observations sur le Lias de la Sierra Elvira (Province de Grenade). Livre Mem. P. Fallot. Soc. Geol. France. 183-188.
  • MARSAGLIA, K.M. y DEVRIES KLEIN, G., 1983. The paleogeography of Paleozoic and Mesozoic storm depositional systems. J. Geol. 91, 117-142.
  • MARTIN, J.M., 1980. Las dolomias de las Cordilleras Béticas. Tesis Doctoral Univ. Granada. 201 p.
  • MARTIN, J.M. y DABRIO, C.J., 1981. Calizas de crinoides del Carixiense subbético: historia diagenética. Bol. R. Soc. Española Hist. Nat. (Geol.) 79, 287-291.
  • RIVAS, P., 1973. Estudio paleontológico-estratigráfico del Lias (sector central de las Cordilleras Béticas). Resumen de Tesis Doctoral. Secr. Publ. Univ. Granada. 29, 77 p.
  • TWICHELL, D.C., 1983. Bedform distribution and inferred sand transport on Georges Bank, United States Atlantic Continental Shelf. Sedimentology. 30, 695-710.
  • VAIL, P.R., MITCHUM, JR., R.M. y THOMPSON, III, S., 1977. Seismic stratigraphy and global changes of sea level, Part 4: global cycles of relative changes of sea level. En Payton, C.E. (ed.) Seismic Stratigraphy-Applications to Hydrocarbon Exploration. A.A.P.G. Mem. 26, 83-97.
  • VIS SER, M .J., 1980. Neap-spring cycles reflected in Holocene subtidallarge-scale bedform deposits: A preliminary note. Geology. 8, 543-546.·
  • WALKER, R.O. (1979) Facies Models 7. Shallow marine sands en Walker, R.O. (ed.) Facies Models. Geoscience Canada Reprint Series l. 75-89.