Understanding the Quaternary evolution of an intramountain staircase terraces model using morphometric indicesLozoya River, Central System, Spain

  1. Karampaglidis, Theodoros 1
  2. Benito-Calvo, Alfonso 2
  3. Pérez-González, Alfredo 3
  1. 1 MONREPOS, Archaeological Research Centre and Museum for Human Behavioural Evolution, Germany
  2. 2 Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), España
  3. 3 I.D.E.A. The Institute of Evolution in Africa, España
Revista:
Estudios geológicos

ISSN: 0367-0449

Año de publicación: 2020

Volumen: 76

Número: 2

Tipo: Artículo

DOI: 10.3989/EGEOL.43508.527 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Estudios geológicos

Resumen

Los índices morfométricos son descritos como herramientas útiles para comprender la evolución geodinámica de diferentes regiones geológicas, aunque suelen aplicarse considerando sólo la geometría actual de las formas del relieve. En este trabajo, hemos combinado una cartografía geomorfológica detallada & algunos de los índices y variables morfométricas más relevantes (Vf, Índice-T, SL, concavidad, elevación y pendiente), para cuantificar la evolución del río Lozoya. Estos índices fueron calculados usando no sólo las formas actuales del relieve, sino también para diferentes periodos. Este es el caso del índice Vf, cuyos valores fueron calculados a lo largo del tiempo, utilizando la paleotopografía definida por las terrazas fluviales rocosas del río Lozoya. Estas técnicas fueron aplicadas a la sequencia de terrazas rocosas del río Lozoya por medio de SIG y herrameintas estadísticas. El área de trabajo se ubica en una depresión tectónica intramontañosa delimitada por alineaciones pop-up (Sistema Central Español). El análisis geomorfométrico ha revelado una evolución Cuaternaria compleja controlada y condicionada por factores como las principales, estructuras Alpinas, la litología de subsuelo, la geomorfología regional, el levantamiento regional y el clima. En la cuenca de drenaje del Río Lozoya, los valles más incididos y estrechos se localizan aguas abajo, asociados con cambios litoestructurales y capturas fluviales, mientras que los valles más amplios se localizan hacia la zona de cabecera, relacionados con depresiones tectónicas pop-down. Por otro lado, el análisis del perfil longitudinal del Río Lozoya ha mostrado que los knickpoints mayores han persistido durante el tiempo, por lo menos desde el Mioceno Superior y sin aparentes signos de reactivación durante el Cuaternario. Finalmente, nuestro análisis revela que la formación y preservación de las terrazas erosivas están controladas por factores litológicos y morfoestucturales.

Información de financiación

This work was funded by the Research Project of the Archaeological Sites of the Pinilla del Valle (Comunidad Autónoma de Madrid, Spain). We would like to thank Francisco Gutiérrez for his useful suggestions and comments that improved the consistency and clarity of the manuscript. The authors are also grateful to George Patsiaouras and Colin Woodham for their careful revision of the text.

Referencias bibliográficas

  • Alonso-Zarza, A.M.; Calvo, J.P. & Garcia del Cura, M.A. (1993). Palaeogeomorphological controls on the distribution and sedimentary styles of alluvial systems, Neogene of the NE of the Madrid Basin (central Spain). Special Publication of the International Association of Sedimentologists, 17: 277-292. https://doi.org/10.1002/9781444303995.ch19
  • Andeweg, B.; Vicente, G. De; Cloetingh, S.; Giner, J. & Muñoz Martin, A. (1999). Local stress fields and intraplate deformation of lberia: variations in spatial and temporal interplay of regional stress sources. Tectonophysics, 305: 153-164. https://doi.org/10.1016/S0040-1951(99)00004-9
  • Antoine, P.; Lautridou, J.P. & Laurent, M. (2000). Longterm fluvial archives in NW France: response of the Seine and Somme rivers to tectonic movements, climate variations and sea-level changes. Geomorphology 33: 183-207. https://doi.org/10.1016/S0169-555X(99)00122-1
  • Antón, L.; Rodés, A.; Vicente, G. De; Pallàs, R.; Garcia-Castellanos, D.; Stuart, F.M.; Braucher, R. & Bourlès, D. (2012). Quantification of fluvial incision in the Duero Basin (NW Iberia) from longitudinal profile analysis and terrestrial cosmogenic nuclide concentrations. Geomorphology 165-166: 50-61. https://doi.org/10.1016/j.geomorph.2011.12.036
  • Antón, L.; De Vicente, G.; Muñoz-Martín, A. & Stokes, M. (2014). Using river long profiles and geomorphic indices to evaluate the geomorphological signature of continental scale drainage capture, Duero basin (NW Iberia). Geomorphology, 206: 250-261. https://doi.org/10.1016/j.geomorph.2013.09.028
  • Arenas, R.; Fúster, J.M.; Martínez, J.; Del Olmo, A. & Villaseca, E. (1991). Mapa Geológico de España a E.1:50.000, Segovia (483). Madrid, IGME.
  • Arsuaga, J.L.; Baquedano, E. & Pérez-González, A. (2006). Neanderthal and carnivore occupations in Pinilla del Valle sites (Comunity of Madrid, Spain). Proceedings of the XVISPP Congress, British Archaeological Reports, Lisbon 2006.
  • Aznar, J.M.; Pérez-González, A. & Portero García, J.M. (1995). Mapa Geológico de España a E. 1:50.000, Valdepeñas de la Sierra (485). Madrid, IGME.
  • Azor, A.; Casquet, C.; Martin, L.M.; Navidad, M.; Del Olmo, A.; Peinado Moreno, M.; Pineda, A.; Villar Alonso, P. & Villaseca, C. (1991). Mapa Geológico de España a E.1:50.000, Prádena (458). Madrid, IGME.
  • Baena-Perez, J.; Moreno-Serrano, F.; Nozal-Martin, F.; Alfaro-Zubero, J.A. & Barranco-Sanz, L.M. (1998). Mapa neotectónico de España. Madrid, IGME.
  • Bellido, F.; Casquet, C.; Fúster, J.M.; González, F.; Martin, L.M.; Martínez-Salinova, J. & Del Olmo, A. (2004). Mapa Geológico de España a E. 1:50.000, Torrelaguna (509). Madrid, IGME.
  • Bellido, F.; Casquet, C.; Fúster, J.M.; Martin, A.; Del Olmo, A. & De Pablo, J.G. (1991a). Mapa Geológico de España a E. 1:50.000, Cercedilla (508). Madrid, IGME.
  • Bellido, F.; Escuder, J.; Klein, E. & Del Olmo, A. (1991b). Mapa Geológico de España a E. 1:50.000, Buitrago de Lozoya (484). IGME, Madrid.
  • Benito, A.; Pérez-González, A. & Santonja, M. (1998). Terrazas rocosas, aluviales y travertínicas del valle alto del río Henares (Guadalajara, España). Geogaceta, 24: 55-58.
  • Benito-Calvo, A.; Ortega, A.I.; Pérez-González, A.; Campaña, I.; Bermúdez De Castro, J.M. & Carbonell, E. (2015). Palaeogeographical reconstruction of the Pleistocene sites in the Sierra the Atapuerca (Burgos, Spain). Quaternary international, 433(A): 379-392. https://doi.org/10.1016/j.quaint.2015.10.034
  • Benito-Calvo, A. & Pérez-González, A. (2010). Las superficies de erosión neógenas en la zona de transición entre la Cordillera Ibérica y el Sistema Central (Guadalajara, España). Revista de la Sociedad Geológica de España, 23 (3-4), 145-156.
  • Benito-Calvo, A.; Pérez-González, A. & Parés, J.M. (2008). Quantitative reconstruction of late Cenozoic landscapes: a case study in the Sierra de Atapuerca (Burgos, Spain). Earth Surface Processes and Landforms, 33: 196-208. https://doi.org/10.1002/esp.1534
  • Birot, P. & Solé Sabarís, L. (1954). Investigaciones sobremorfología de la cordillera central Española. Instituto Juan Sebastián Elcano, C.S.I.C.; Madrid.
  • Bishop, P., (2007). Long-term landscape evolution: linking tectonics and surface processes. Earth Surface Processes and Landforms 32: 329-365. https://doi.org/10.1002/esp.1493
  • Bridgland, D.R. (2000). River terrace systems in north-west Europe: an archive of environmental change, uplift and early human occupation. Quaternary Science Reviews 19, 1293-1303. https://doi.org/10.1016/S0277-3791(99)00095-5
  • Bridgland, D. & Westaway, R. (2008). Climatically controlled river terrace staircases: A worldwide Quaternary phenomenon. Geomorphology, 98(3-4): 285-315. https://doi.org/10.1016/j.geomorph.2006.12.032
  • Bull, W.B. (1978). Geomorphic Tectonic Classes of the South Front of the San Gabriel Mountains, California U.S. Geological Survey Contract Report, 14-08-001- G-394, Office of Earthquakes, Volcanoes and Engineering, Menlo Park, CA.
  • Bull, W.B. & McFadden, L.D. (1977). Tectonic geomorphology north and south of the Garlock Fault, California. In: Geomorphology in Arid Regions (Doehring, D.O., Ed.). Proceedings Volume of the Eighth Annual Geomorphology Symposium Held at the State University of New York, Binghamton, 115- 138. https://doi.org/10.4324/9780429299230-5
  • Bull, W.B. (2007). Tectonic Geomorphology of Mountains: A New Approach to Paleoseismology. Wiley- Blackwell, Oxford, UK, 326 pp.
  • Burbank, D.W. & Anderson, R.S. (2001). Tectonic Geomorphology. Oxford: Blackwell. 460 pp.
  • Capote, R. & Fernández, M.J. (1975). Las series anteordovícicas del Sistema Central. Boletin Geologico y Minero, 86 (6): 551-596.
  • Capote, R.; González, J.M. & Vicente, G. De (1987). Análisis poblacional de la fracturación tardihercínica en el Sector Central del Sistema Central Ibérico. Cuadernos Do Laboratorio Xeoloxico De Laxe, 11: 305-314.
  • Carrasco, R.M.; Pedraza, J.; Willenbring, J.K.; Karampaglidis, T.; Soteres, R.L. & Martín-Duque, J.F. (2016). Morfología glaciar del Macizo de Los Pelados-El Nevero (Parque Nacional de la Sierra de Guadarrama). Nueva interpretación y cronología. Boletín de la Real Sociedad Española de Historia Natural Sección Geología, 110: 49-66.
  • Collins, B.D.; Montgomery, D.R.; Schanz, S.A. & Larsen, I.J. (2016). Rates and mechanisms of bedrock incision and strath terrace formation in a forested catchment, Cascade Range, Washington. Geological Society of America Bulletin, B31340, https://doi.org/10.1130/B31340.1
  • Cox, R.T. (1994). Analysis of drainage-basin symmetry as a rapid technique to identify areas of possible Quaternary tilt-block tectonics: an example from the Mississippi Embayment. Geological Society of America Bulletin, 106 (1994): 571-581 https://doi.org/10.1130/0016-7606(1994)106<0571:AODBSA>2.3.CO;2
  • Cunha, P.; Martins, A.; Huot, S.; Murray, A. & Raposo, L. (2008). Dating the Tejo River lower terraces (Rodao, Portugal) to assess the role of tectonics and uplift. Geomorphology 102, 43-54. https://doi.org/10.1016/j.geomorph.2007.05.019
  • Cunha, P.P.; Martins, A.A.; Gomes, A.; Stokes, M.; Cabral, J.; Lopes, F.C.; Pereira, D.; Vicente, G. De; Buylaert, J.P.; Murray, A.S. & Antón, L. (2019). Mechanisms and age estimates of continental-scale endorheic to exorheic drainage transition: Douro River, Western Iberia. Global and Planetary Change, 181: 102985. https://doi.org/10.1016/j.gloplacha.2019.102985
  • De Bruijne, C.; H. & Andrienssen, P. (2002). Far field effects of Alpine plate tectonism in the Iberian microplate recorded by fault related denudation in the Spanish Central System. Tectonophysics, 349: 161-184. https://doi.org/10.1016/S0040-1951(02)00052-5
  • Duvall, A.; Kirby, E. & Burbank, D. (2004). Tectonic and lithologic controls on bed-rock channel profiles and processes in coastal California. Journal of Geophysical Research-Earth Surface 109, F03002. https://doi.org/10.1029/2003JF000086
  • Fernández García, P. & Garzón Heydt, G. (1994). Ajustes en la red de drenaje y morfoestructura en los ríos de Centro-Sur de la cuenca del Duero. In: Geomorfología en España (Arnáez, J. Eds.). Sociedad de Geomorfología, Logroño, 471-484.
  • Finnegan, N.J. & Dietrich, W.E. (2011). Episodic bedrock strath terrace formation due to meander migration and cutoff. Geology 39: 143-146. https://doi.org/10.1130/G31716.1
  • Finnegan, N.J. & Balco, G. (2013). Sediment supply, base level, braiding, and bedrock river terrace formation: Arroyo Seco, California, USA. Geological Society of America Bulletin, 125: 1114-1124. https://doi.org/10.1130/B30727.1
  • Font, M.; Amorese, D. & Lagarde, J.L. (2010). DEM and GIS analysis of the stream gradient index to evaluate effects of tectonics: The Normandy intraplate area (NW France). Geomorphology, 119: 172-180. https://doi.org/10.1016/j.geomorph.2010.03.017
  • Fuller, T.K.; Perg, L.A.; Willenbring, J.K. & Lepper, K. (2009). Field evidence for climate-driven changes in sediment supply leading to strath terrace formation. Geology, 37: 467-470. https://doi.org/10.1130/G25487A.1
  • García-Castellanos, D. & Larrasoaña, J.C. (2015). Quantifying the post-tectonic topographic evolution of closed basins: the Ebro basin (northeast Iberia). Geology, 43: 663-666. https://doi.org/10.1130/G36673.1
  • Garcia-Castellanos, D.; Verges, J.; Gaspar-Escribano, J. & Cloetingh, S. (2003). Interplay between the tectonics, climate, and fluvial transport during the Cenozoic evolution of the Ebro Basin (NE Iberia). Journal of Geophysical Research, 108(B7). https://doi.org/10.1029/2002JB002073
  • Garrote, J.; Fernández García, P. & Garzón Heydt, G. (2002). Parámetros morfométricos de la red de drenaje y sus implicaciones estructurales en la cuenca del Tajo. In: Aportaciones a la geomorfología de España en el inicio del Tercer Milenio (Pérez-González, A.; Vegas, J. & Machado, M.J., Eds.). IGME, Madrid, 45-52.
  • Garrote, J.; Garzón Heydt, G. & Cox, T. (2008). Multi-stream order analyses in basin asymmetry: A tool to discriminate the influence of neotectonics in fluvial landscape development (Madrid Basin, Central Spain). Geomorphology, 102: 130-144. https://doi.org/10.1016/j.geomorph.2007.07.023
  • Garzón Heydt, M.G. (1980). Estudio geomorfológico de una transversal en la Sierra de Gredos Oriental (Sistema Central Español). Ensayo de una cartografia geomorfológica. Ph.D. Thesis, Facultad de Ciencias Geológicas, Universidad Complutense, Madrid.
  • Garzón Heydt, G.; Tejero, R.; Ortega, J.A. & Garrote, J. (2012). Incisión y desarrollo de la red fluvial sobre sustrato rocoso. Morfología tectónica en el interfluvio Tajo-Guadiana. Actas XII Reunión Nacional de Geomorfología. Santander (Spain).
  • Gasparini, N.M.; Whipple, K.X. & Bras, R.L. (2007). Predictions of steady state and transient landscape morphology using sedimentflux-dependent river incision models. Journal of Geophysical Research-Earth Surface, 112. https://doi.org/10.1029/2006JF000567
  • Gladfelter, B.G. (1971). Meseta and campiña landforms in central Spain: a geomorphology of the Alto Henares basin. Department of Geography, University of Chicago.
  • Goldrick, G. & Bishop, P. (2007). Regional analysis of bedrock stream long profiles: evaluation of Hack's SL form, and formulation of an alternative (the DS form). Earth Surface Processes and Landforms 32: 649-671. https://doi.org/10.1002/esp.1413
  • Gouveia, M.P.; Cunha, P.P.; Falguères, C.; Voinchet, P.; Martins, A.A.; Bahain, J.-J. & Pereira, A. (2020). Electron spin resonance dating of the culminant allostratigraphic unit of the Mondego and Lower Tejo Cenozoic basins (W Iberia), which predates fluvial incision into the basin-fill sediments. Global and Planetary Change, 184: 103081. https://doi.org/10.1016/j.gloplacha.2019.103081
  • Gracia, F.J.; Gutiérrez, M. & Leranoz, B. (1988). Las superficies de erosión neógenas en el sector central de la Cordillera Ibérica. Revista Sociedad Geológica de España, 1(1-2): 135-142.
  • Gutiérrez-Elorza, M. & Gracia, F.J. (1997). Environmental interpretation and evolution of the Tertiary erosion surfaces in the Iberian range (Spain). In: M. Widdowson, (Eds), Palaeosurfaces: Recognition, Reconstruction and Palaeoenvironmental Interpretation. Geological Society Special Publication, 120: 147-158. https://doi.org/10.1144/GSL.SP.1997.120.01.10
  • Hack, J.T. (1973). Stream-profile analysis and the stream-gradient index. Journal of Research of the United State Geological Survey, 1: 421-429.
  • Hancock, G.S. & Anderson, R.S. (2002). Numerical modeling of fluvial strath-terrace formation in response to oscillating climate. Geological Society of America Bulletin 114: 1131-1142. https://doi.org/10.1130/0016-7606(2002)114<1131:NMOFST>2.0.CO;2
  • Hernández-Pacheco, E. (1932). Tres ciclos de erosion geologica en las Sierras Orientales de la Cordillera Central. Boletin Sociedad Española de Historia Natural, 32: 455-460.
  • Jena, S.K. & Tiwari, K.N. (2006). Modeling synthetic unit hydrograph parameters with geomorphologic parameters of watersheds. Journal of Hydrology, 319: 1-14. https://doi.org/10.1016/j.jhydrol.2005.03.025
  • Karampaglidis, T. (2015). La evolución geomorfológica de la cuenca de drenaje del río Lozoya (Comunidad de Madrid, España). Ph.D. Thesis, Universidad Complutense, Madrid.
  • Karampaglidis, T.; Benito-Calvo, A. & Perez-Gonzalez, A. (2014a). Geomorphology of the Lozoya river drainage basin area (Community of Madrid, Spanish Central System). Journal of Maps, 11(2): 342-353. https://doi.org/10.1080/17445647.2014.926103
  • Karampaglidis, T.; Benito-Calvo, A. & Perez-Gonzalez, A. (2014b). Analyzing the drainage network combining morphometric indices and statistic tools. A case study from Lozoya River basin (Spanish Central System, Community of Madrid-Guadalajara). 13rd Meeting of the Spanish Society of Geomorphology, Caceres (Spain).
  • Karampaglidis, T.; Benito-Calvo, A.; Pérez-González, A.; Baquedano, E. & Arsuaga, J.L. (2011). Secuencia geomorfológica y reconstrucción del paisaje durante el Cuaternario en el valle del río Lozoya (Sistema Central, España). Boletín de la Real Sociedad Española de Historia Natural, Sección Geológica, 105(1-4): 149-162.
  • Karampaglidis, T.; Rodes, A.; Benito-Calvo, A.; Pérez-González, A. & Miguens-Rodriguez, L. (2014c). Exposure ages of two rock terraces of the Lozoya River (Central Spain) from cosmogenic nuclides Be-10 and Al-26. 13rd Meeting of the Spanish Society of Geomorphology, Caceres (Spain).
  • Karampaglidis, T.; Benito-Calvo, A.; Rodés, A.; Braucher, R.; Pérez-González, A.; Pares, J.; Stuart, F.; Di Nicola, L. & Bourles, D. (2020). Pliocene endorheic-exhoreic drainage transition of the Cenozoic Madrid Basin (Central Spain). Global and Planetary Change, 194: 103295. https://doi.org/10.1016/j.gloplacha.2020.103295
  • Knighton, A.D. (1998). Fluvial Forms and Processes. A New Perspective. Arnold, London.
  • Larue, J.P. (2008). Effects of tectonics and lithology on long profiles of 16 rivers of the southern Central Massif border between the Aude and the Orb (France). Geomorphology, 93: 343-367. https://doi.org/10.1016/j.geomorph.2007.03.003
  • Leopold, L.B. (1994). A View of the River. Cambridge University Press, New York.
  • McKnight, T. & Hess, D. (2005). The Fluvial Processes. Physical Geography: A Landscape Appreciation (8th ed.). Pearson, Prentice Hall, New Jersey.
  • McLachlan, G.,J. (2004). Discriminant analysis and statistical patterns recognition. John Willey & Sons, Hoboken, New Jersey.
  • Merritts, D.; Vincent, K. & Wohl, E. (1994). Long river profiles, tectonism, and eustasy: A guide to interpreting fluvial terraces. In: Tectonics and Topography (Ellis, M. and Merritts, D., Eds.). Special Section Part II, Journal of Geophysical Research, 99 (B7): 14.031-14.050. https://doi.org/10.1029/94JB00857
  • Mink, S.; López-Martínez, J.; Maestro, A.; Garrote, J.; Ortega, J.A.; Serrano, E.; Durán, J.J. & Schmid, T. (2014). Insights into deglaciation of the largest ice-free area in the South Shetland Islands (Antarctica) from quantitative analysis of the drainage system, Geomorphology, 225: 4-24. https://doi.org/10.1016/j.geomorph.2014.03.028
  • Montgomery, D.R. (2004). Observations on the role of lithology in strath terrace formation and bedrock channel width. American Journal of Science 304: 454-476. https://doi.org/10.2475/ajs.304.5.454
  • Morales, J.; Alcalá, L. & Nieto, M. (1993). Las faunas de vertebrados del Terciario. In Madrid antes del hombre. Museo Nacional de Ciencias Naturales. Comunidad de Madrid, 23-31.
  • Moreno, D.; Falguères, C.; Pérez-González, A.; Duval, M.; Voinchet, P.; Benito-Calvo, A.; Ortega, A.I.; Bahain, J.J.; Sala, R.; Carbonell, E.; Bermúdez de Castro, J.M. & Arsuaga, J.L. (2012). ESR chronology of alluvial deposits in the Arlanzón valley (Atapuerca, Spain): Contemporaneity with Atapuerca Gran Dolina site. Quaternary Geochronology, 10: 418- 423. https://doi.org/10.1016/j.quageo.2012.04.018
  • Morris, P.H. & Williams, D.J. (1997). Exponential longitudinal profiles of streams. Earth Surface Processes and Landforms, 22: 143-163. https://doi.org/10.1002/(SICI)1096-9837(199702)22:2<143::AID-ESP681>3.0.CO;2-Z
  • Ohmori, H. (1991). Change in the mathematical function type describing the longitudinal profile of a river through an evolutionary process. Journal of Geology 99: 97-110. https://doi.org/10.1086/629476
  • Ordoñez, S.; González Martín, J.A. & Garcia Del Cura, M.A. (1990). Datacion radiogenica (U-234/U-238 y Th-230/U-234) de sistemas travertinicos del Alto Tajo (Guadalajara). Geogaceta, 8: 53-56.
  • Ortiz, J.E.; Torres, T.; Delgado, A.; Reyes, E. & Díaz-Bautista, A. (2009). A review of the Tajo river tufa deposits (central Spain): age and palaeoenvironmental record. Quaternary Science Review, 28: 947- 963. https://doi.org/10.1016/j.quascirev.2008.12.007
  • Palacios, D.; De Marcos, J. & Vasquez-Selem, L. (2011). Last Glacial Maximum and deglaciation of Sierra de Gredos, Central Iberian Peninsula. Quaternary International, 233: 16-26. https://doi.org/10.1016/j.quaint.2010.04.029
  • Pastre, J. (2005). Les nappes alluviales de l'Allier en Limagne (Massif Central, France): stratigraphie et corrélations avec le volcanisme regional. Quaternaire, 16(3): 153-175. https://doi.org/10.4000/quaternaire.383
  • Patton, P.C. (1988). Drainage basin morphometry and floods. In: Flood Geomorphology (V.R. Baker, R.C. Kochel, and P.C. Patton, Eds.). Wiley, New York, 51-65.
  • Pazzaglia, F.J.; Gardner, T.W. & Merritts, D. (1998), Bedrock fluvial incision and longitudinal profile development over geologic time scales determined by fluvial terraces, In: Bedrock Channels: American Geophysical Union (Wohl, E. & Tinkler, K., Eds.). Geophysic Monograph Series, 107: 207-235. https://doi.org/10.1029/GM107p0207
  • Pazzaglia, F.J. (2013). Fluvial terraces. In: Treatise on Geomorphology (Schroeder, J.F., Ed.). Elsevier, 379-412. https://doi.org/10.1016/B978-0-12-374739-6.00248-7
  • Pedraza, J. (1994). El sistema Central Español. In: Geomorfología de España (M. Gutiérrez Elorza, Eds.). Rueda, Madrid, 63-100.
  • Pedraza, J. & Carrasco, R.M. (2005). El Glaciarismo Pleistoceno del Sistema Central. Enseñanza de las Ciencias de la Tierra, 13(3): 278-288.
  • Pedraza, J. (1978). Estudio geomorfológico de la zona de enlace entre las Sierras de Gredos y Guadarrama (Sistema Central Español). Ph.D. Thesis, Universidad Complutense, Madrid.
  • Pedrera, A.; Vicente Pérez-Peña, J.; Galindo-Zaldívar, J.; Miguel Azañón, J. & Azor, A. (2009). Testing the sensitivity of geomorphic indices in areas of low-rate active folding (eastern Betic Cordillera, Spain). Geomorphology, 105: 218-231. https://doi.org/10.1016/j.geomorph.2008.09.026
  • Pérez-González, A. (1994). Depresión del Tajo. In: Geomorfologia de España (Gutierrez Elorza, M., Ed.). Rueda, Madrid, 389-410.
  • Pérez-González, A.; Gallardo-Millán, J.L.; Uribelarrea, D.; Panera, J. & Rubio-Jara, S. (2013). La inversion Matuyama-Brunhes en la secuencia de terrazas del río Jarama entre Velilla de San Antonio y Altos de la Mejorada, al SE de Madrid (España). Estudios Geológicos, 69(1):35-46. https://doi.org/10.3989/egeol.40862.173
  • Pérez-González, A.; Karampaglidis, T.; Arsuaga, J.L.; Baquedano, E.; Bárez, S.; Gómez, J.J.; Panera, J.; Márquez, B.; Laplana, C.; Mosquera, M.; Huguet, R.; Sala, P.; Arriaza, M.C.; Benito, A.; Aracil, E. & Maldonado, E. (2010). Aproximación geomorfológica a los yacimientos del Pleistoceno Superior del Calvero de la Higuera en el Valle Alto del Lozoya (Sistema Central español, Madrid). In: Actas de la primera reunión de científicos sobre cubiles de hienas (y otros grandes carnívoros) en los yacimientos arqueológicos de la Península Ibérica. Zona Arqueológica 13 (E. Baquedano & J. Rossell, Eds.). Alcalá de Henares, Museo Arqueológico Regional, Madrid.
  • Pérez-Peña, J.S.; Azor, A.; Azañón, J.M. & González-Lodeiro, F. (2009). Spatial analysis of stream power using GIS: SLk anomaly maps. Earth Surface Processes and Landforms 34: 16- 25. https://doi.org/10.1002/esp.1684
  • Personius, S.F.; Kelsey, H.M. & Grabau, P.C. (1993). Evidence for regional stream aggradation in the Central Oregon Coast range during the Pleistocene-Holocene transition. Quaternary Research, 40: 297-308. https://doi.org/10.1006/qres.1993.1083
  • Phillips, J.D. & Lutz, J.D. (2008). Profile convexities in bedrock and alluvial streams. Geomorphology, 102 (3-4): 554-566. https://doi.org/10.1016/j.geomorph.2008.05.042
  • Pinilla, L.; Pérez-González, Α.; Sopeña, A. & Pares, J.M. (1995). Fenómenos de hundimientos sinsedimentarios en los depósitos cuaternarios del río Tajo en la cuenca de Madrid (Almoguera-Fuentidueña de Tajo). In: Reconstrucción de paleoambientes y cambios climáticos durante el Cuaternario (Aleixandre, T. & Pérez-González, A., Eds.). Centro de Ciencias Medioambientales. CSIC, Madrid, 125-139.
  • Portero, J.M.; Díaz, M.; González, F.; Pérez, A.; Gallardo, J.; Aguilar, M.J. & Leal, M.C. (1990). Mapa Geológico de España 1:50,000, sheet 485 (Valdepeñas de la Sierra). IGME. Madrid.
  • Prince, P.S.; Spotila, J.A. & Henika, W.S. (2011). Stream capture as driver of transient landscape evolution in a tectonically quiescent setting. Geology 39(9): 823-826. https://doi.org/10.1130/G32008.1
  • Richards, K.S. (1982). Rivers. Form and Process in Alluvial Channels. Edward Arnold, London.
  • Ritter, D.F.; Kochel, R.C. & Miller, J.R. (1995). Process Geomorphology. William C. Brown, Dubuque, Iowa.
  • Roe, G.H.; Montgomery, D.R. & Hallet, B. (2002). Effects of orographic precipitation variations on the concavity of steady state river profiles. Geology 30: 143-146. https://doi.org/10.1130/0091-7613(2002)030<0143:EOOPVO>2.0.CO;2
  • Rodríguez-Rodríguez, L.; Antón, L.; Rodés, Á.; Pallàs, R.; García-Castellanos, D.; Jiménez Munt, I.; Struth, L.; Leanni, L. & ASTER Team (2020). Dates and rates of endo-exorheic drainage development: Insights from fluvial terraces (Duero River, Iberian Peninsula). Global and Planetary Change, 193: 103271. https://doi.org/10.1016/j.gloplacha.2020.103271
  • Santisteban, J.I. & Schulte, L. (2007). Fluvial networks of the Iberian Peninsula: a chronological framework. Quaternary Science Reviews, 26: 2738-2757. https://doi.org/10.1016/j.quascirev.2006.12.019
  • Santonja, M. & Pérez-González, A. (1997). Los yacimientos achelenses en terrazas fluviales de la Meseta Central española. In: Cuaternario Ibérico (Rodríguez. J Vidal, Ed.). Comunidad de Madrid, Madrid, 224-234.
  • Santonja, M. & Pérez-González, A. (2001). El Paleolítico inferior en el interior de la Península Ibérica. Un punto de vista desde la Geoarqueologia. Zephyrus: 53-54(2000-2001): 27-77.
  • Schanz, S.A. & Montgomery, D.R. (2016). Lithologic controls on valley width and strath terrace formation. Geomorphology, 258: 58-68. https://doi.org/10.1016/j.geomorph.2016.01.015
  • Schumm, S.A. (2005). River Variability and Complexity. Cambridge University Press, New York. https://doi.org/10.1017/CBO9781139165440
  • Schwenzner, J. (1937). La región montañosa central de la meseta española. Resumen de la obra: Zur Morphologie des Zentral-spanischen Hochlandes. Geographische Abhandlungen. Boletín de la Sociedad Española de Historia Natural, 41: 121-147.
  • Seong, Y.B.; Owen, L.A.; Bishop, M.P.; Bush, A.; Clendon, P.C.; Luke, F.; Robert, C.; Kamp, U. & Shroder, J.F. (2008). Rates of fluvial bedrock incision within an actively uplifting orogen: Central Karakoram Mountains, northern Pakistan. Geomorphology, 97 (3-4): 274-286. https://doi.org/10.1016/j.geomorph.2007.08.011
  • Sesé, C. & Ruiz, A. (1992). Nuevas faunas de micromamíferos del Pleistoceno del Norte de la Provincia de Madrid (España). Boletín de la Real Sociedad Española de Historia Natural (Sección Geología), 87 (1-4): 115-139.
  • Silva, P.G.; Goy, J.L. & Zazo, C. (1988). Neotectónica del sector centro-meridional de la Cuenca de Madrid. Estudios Geológicos, 44: 415-427. https://doi.org/10.3989/egeol.88445-6558
  • Silva, P.G. & Ortiz, I. (2002). Mapa geomorfológico. In: Mapa Geológico de España, E1:50,000, (Ledanca (487). IGME, Madrid.
  • Silva, P.G.; Roquero, E.; López-Recio, M.; Huerta, P. & Martínez-Graña, A.M. (2017). Chronology of fluvial terrace sequences for large Atlantic rivers in the Iberian Peninsula (Upper Tajo and Duero drainage basins, Central Spain). Quaternary Science Reviews, 166: 188-203. https://doi.org/10.1016/j.quascirev.2016.05.027
  • Sinha, S.K. & Parker, G. (1996). Causes of concavity in longitudinal profiles of rivers. Water Resources Research, 32: 1417-1428. https://doi.org/10.1029/95WR03819
  • Smith, T.R.; Merchant, G.E. & Birnir, B. (2000). Transient attractors: towards a theory of the graded stream for alluvial and bedrock channels. Computers and Geosciences, 26: 541-580. https://doi.org/10.1016/S0098-3004(99)00128-4
  • Snow, R.S. & Slingerland, R.L. (1987). Mathematical modeling of graded river profiles. Journal of Geology 95, 15-33. https://doi.org/10.1086/629104
  • Snyder, N.P.; Whipple, K.X.; Tucker, G.E. & Merritts, D.J. (2000). Landscape response to tectonic forcing: digital elevation model analysis of stream profiles in the Mendocinotriplejunctionregion, northernCalifornia. Geological Society of America Bulletin 112: 1250-1263. https://doi.org/10.1130/0016-7606(2000)112<1250:LRTTFD>2.0.CO;2
  • Soria-Jáuregui, A.; Jiménez-Cantizano, F. & Antón, L. (2018). Geomorphic and tectonic implications of the endorheic to exorheic transition of the Ebro River system in Northeast Iberia. Quaternary Research, 91(2) : 472-492. https://doi.org/10.1017/qua.2018.87
  • Stock, J.D.; Montgomery, D.R.; Collins, B.D.; Dietrich, W.E. & Sklar, L. (2005). Field measurements of incision rates following bedrock exposure: implications for process controls on the long profiles of valleys cut by rivers and debris flows. Geological Society of America Bulletin 117: 174-194. https://doi.org/10.1130/B25560.1
  • Stokes, M.; Mather, A.E.; Belfoul, M.; Faik, F.; Bouzid, S.; Geach, M.R.; Cunha, P.P.; Boulton, S.J. & Thiel, C. (2017). Controls on dryland mountain landscape development along the NW Saharan desert margin: Insights from Quaternary river terrace sequences (Dadès River, south-central High Atlas, Morocco). Quaternary Science Reviews, 166: 363-379. https://doi.org/10.1016/j.quascirev.2017.04.017
  • Strahler, A.N. (1964). Quantitative geomorphology of drainage basins and channel networks. In: Handbook of Applied Hydrology (V.T. Chow, Eds.). McGraw- Hill, New York.
  • Struth, L.; Garcia-Castellanos, D.; Viaplana-Muzas, M. & Vergés, J. (2019). Drainage network dynamics and knickpoint evolution in the Ebro and Duero basins: from endorheism to exorheism. Geomorphology 327: 554-571. https://doi.org/10.1016/j.geomorph.2018.11.033
  • Torres, T.; Cobo, R.; García-Alonso, P.; Grün, R.; Hoyos, M.; Juliá, R.; Llamas, J. & Soler, V. (1995). Evolución del sistema fluvial Jarama-Lozoya-Guadalix durante el Plioceno terminal y Cuaternario. Geogaceta, 17: 46-48.
  • Torres, T.; Ortiz, J.E.; Cobo, R.; Puch, C.; Julia, R.; Grün, R. & Soler, V. (2005). Génesis y edad del karst del Cerro de la Oliva y la Cueva del Reguerillo (Torrelaguna, Madrid). Libro homenaje al Profesor D. Rafael Fernández Rubio, Madrid.
  • Türkan, A. & Bekir, A. (2011). Development and morphometry of drainage network in volcanic terrain, Central Anatolia, Turkey. Geomorphology, 125(4): 485-503. https://doi.org/10.1016/j.geomorph.2010.09.023
  • Turowski, J.M.; Hovius, N.; Meng-Long, H.; Lague, D. & Men-Chiang, C. (2008). Distribution of erosion across bedrock channels. Earth Surface Processes and Landforms, 33: 353-363. https://doi.org/10.1002/esp.1559
  • Turowski, J.M.; Lague, D. & Hovius, N. (2007). Cover effect in bedrock abrasion: a new derivation and its implications for the modeling of bedrock channel morphology. Journal of Geophysical Research Earth Surface, 112: F04006. https://doi.org/10.1029/2006JF000697
  • Van den Berg, M.W. & van Hoof, T. (2001). The Maas terrace sequence at Maastricht, SE Netherlands: evidence for 200 m of late Neogene and Quaternary surface uplift. In: River Basin Sediment Systems (Maddy, D.; Macklin, M.G. & Woodward, J.C., Eds.), Archives of Environmental Change. Balkema, Abingdon, England, 45-86.
  • Vicente, G. De; Cloetingh, S.; Van Wees, J.D. & Cunha, P. (2011). Tectonic classification of Cenozoic Iberian foreland basins. Tectonophysics, 502, 38-61. https://doi.org/10.1016/j.tecto.2011.02.007
  • Vicente, G. De; Vegas, R.; Muñoz-Martín, A.; Silva, P.G.; Andrienssen, P.; Cloetín, S.; González-Casado, J.M.; Van Wees, J.D.; Alvárez, J.; Carbó, A. & Olaiz, A. (2007). Cenozoic thick-skinned deformation and topography evolution of the Spanish Central System. Global and Planetary Change, 58: 335-381. https://doi.org/10.1016/j.gloplacha.2006.11.042
  • Vijith, H. & Satheesh, R. (2006). GIS based morphometric analysis of two major upland sub-watersheds of Meenachil River in Kerala (short note). Journal of the Indian of Remote Sensing, 34: 181-185. https://doi.org/10.1007/BF02991823
  • Vijith, H.; Prasannakumar, V.; Sharath Mohan, M.A.; Ninu Krishnan M.V. & Pratheesh, P. (2017) River and basin morphometric indexes to detect tectonic activity: a case study of selected river basins in the South Indian Granulite Terrain (SIGT). Physical Geography, 38 (4): 360-378. https://doi.org/10.1080/02723646.2017.1283478
  • Warburton, J. & Álvarez, C. (1989). A thrust tectonic interpretation of the Guadarrama Mountains, Spanish Central System. In: Libro Homenaje a Chow ( Libro Homenaje a R. Soler, Eds.). Asociación de Geólogos y Geofísicos Españoles del Petróleo (AGGEP), Madrid.
  • Wegmann, K.W. & Pazzaglia, F.J. (2002). Holocene strath terraces, climate change, and active tectonics: the Clearwater River basin, Olympic Peninsula, Washington State. Geological Society of America Bulletin 114: 731-744. https://doi.org/10.1130/0016-7606(2002)114<0731:HSTCCA>2.0.CO;2
  • Wells, S.G.; Bullard, T.F.; Menges, T.M.; Drake, P.G.; Karas, P.A.; Kelson, K.I.; Ritter, J.B. & Wesling, J.R. (1988). Regional variations in tectonic geomorphology along segmented convergent plate boundary, Pacific coast of Costa Rica. Geomorphology, 1: 239- 265. https://doi.org/10.1016/0169-555X(88)90016-5
  • Westaway, R. (2006). Investigation of coupling between surface processes and induced flow in the lower continental crust as a cause of intraplate seismicity. Earth Surface Processes and Landforms, 31: 1480-1509. https://doi.org/10.1002/esp.1366
  • Westaway, R.; Bridgland, D.R.; Sinham, R. & Demir, T. (2009). Fluvial sequences as evidence for landscape and climatic evolution in the Late Cenozoic: A synthesis of data from IGCP 518. Global and Planetary Change, 68 (4): 237-253. https://doi.org/10.1016/j.gloplacha.2009.02.009
  • Westaway, R.; Maddy, D. & Bridgland, D. (2002). Flow in the lower continental crust as a mechanism for the Quaternary uplift of south-east England: constraints from the Thames terrace record. Quaternary Science Reviews, 21: 559-603. https://doi.org/10.1016/S0277-3791(01)00040-3
  • Whipple, K.X. (2004). Bedrock rivers and the geomorphology of active orogens. Annual Review of Earth & Planetary Sciences, 32: 151-185. https://doi.org/10.1146/annurev.earth.32.101802.120356
  • Yanites, B.J. & Tucker, G.E. (2010). Controls and limits on bedrock channel geometry. Journal of Geophysical Research Earth Surface, 115: F04019. https://doi.org/10.1029/2009JF001601