Genética y epigenéticayo soy yo y mi circunstancia

  1. Carlos Vicente Córdoba 1
  1. 1 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

Journal:
Boletín de la Real Academia de Córdoba de Ciencias, Bellas Letras y Nobles Artes

ISSN: 0034-060X

Year of publication: 2017

Volume: 96

Issue: 166

Pages: 33-51

Type: Article

More publications in: Boletín de la Real Academia de Córdoba de Ciencias, Bellas Letras y Nobles Artes

Abstract

The scientific background of Ortega y Gasset's phrase "I am me and my circumstance" was clarified by Waddington, when defines Epigenetics as the study of causal interactions between genes and their products that give rise to the phenotype. In other words, there may be inheritable changes in gene function that occur without a change in DNA sequence during the development and life cycle of each individual. These changes consist of DNA and histone modifications and production of non-messenger, non-coding RNAs that affect the individual's emotional development, the development of brain centers responsible for perception, memory, relationships cause-effect and management of emotions, so they condition the individual's final personality

Bibliographic References

  • ALLÓ, M., Aguirre, E., Bessonov, S., Bertucci, P., Gómez Acuña, L., Buggiano, V., Bellora, N., Singh, B., Petrillo, E., Blaustein, M., Miñana, B., Dujardin, G., Pozzi, B., Pelisch, F., Bechara, E., Agafonov, D.E,, Srebrow, A., Lührmann, R., Valcárcel, J., Eyras, E., Kornblihtt, A.R. (2014): Argonaute-1 binds transcriptional enhancers and controls constitutive and alternative splicing in human cells. Proceedings of the National Academy of Sciences USA, 111:15622-15629.
  • ANDERSON, A.K., Phelps, E.A. (2011): Lesions of the human amygdala impair enhanced perception of emotionally salient events. Nature, 411: 305-309.
  • BARTEL, D.P., Chen, C.Z. (2004): Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nature Reviews of Genetics, 5: 396-400.
  • BERMÚDEZ DE CASTRO, J.M., Mateos, A., Goikoetxea, I. (2010): El cerebro de Homo: costes y beneficios del marcapasos del desarrollo. En Fósiles y moléculas. Aproximaciones a la historia evolutiva del hombre (González-Martín, A., ed.). Real Soc. Esp. Hist. Natural, Madrid, pag. 49-68.
  • BOGIN, B. (1977): Evolutionary hypothesis for human children. Yearbook Physical Anthropology, 40: 63.89.
  • BUXBAUM, A.R., Wu,B., Singer, R.H. (2014): Single β-actin mRNA detection in neurons reveals a mechanism for regulating Its translatability. Science, 343: 419-422.
  • CHANGEUX, J.P. (2004): The physiology of the truth. Neuroscience and human knowledge. Harvard University Press, Cambridge, MA.
  • DAMASIO, A. (2005): En busca de Spinoza. Neurobiología de la emoción y los sentimientos. Critica, Barcelona.
  • DAMASIO, A. (2010): Y el cerebro creó al hombre. Destino, Barcelona.
  • DEL BLANCO, B., Medrano, A., Barco, A. (2015): Neuroepigenética, en la interfase entre genoma y cerebro. SEBBM, 183: 21-23.
  • DORUS, S., Vallender, E.J., Evans, P.D., Jeffrey R. Anderson, J.R., Gilbert, S.L., Ma-howald,M., Wyckoff, G.J., Malcom, C.M., Lahn, B.T. (2004): Accelerated evolution of nervous system genes in the origin of Homo sapiens. Cell, 119: 1027–1040.
  • EDELMAN, G. M. (1992). Bright air, brilliant fire. On the matter of the mind. New York: Basic Books.
  • ESTELLER M., Ecker, J. (2013): ¿Que necesita alguien para hacerse mayor? alt1040.com/2013/07/receta-hacerse-mayor
  • EVERS, K. (2011): Neuroética. Katz Editores, Buenos Aires
  • FALCK-YTTER, T., Gredebäck, G., von Hofsten, C. (2006): Infants predict other people’s action goals. Nature Neuroscience, 9: 878–879.
  • FISET, OP., Paus, T., Daloze, T., Plourde, G., Meuret, P., Bonhomme, V., Hajj-Ali, N., Backman, S.B., Evans, A.C. (2009): Brain mechanisms of propofol-induced loss of consciousness in humans: a positron emission tomographic study. Journal of Neurosciences, 19: 5506-5513.
  • FLORES-SOTO, M.E., Chaparro-Huerta, V., Escoto-Delgadillo, M., Vazquez-Valls, E., González-Castañeda, R.E., Beas-Zarate, C. (2012): Estructura y función de las subunidades del receptor a glutamato tipo NMDA. Neurología, 27: 301-310.
  • KARLEBACH, G., Francks, C. (2015): Lateralization of gene expression in human language cortex. Cortex, 67: 30-36.
  • HAGEMANN, P., Cammoun, L., Gigander, X., Meuli, R., Honey, C.J., Wedeen, V.J., Sporns, O. (2008): Mapping the structural code of human cerebral cortex. Public Library of Science, Biology, 6: e159.
  • HAMBY, M.E., Coskun, V., Sun, Y.E. (2008): Transcriptional regulation of neuronal differentiation: the epigenetic layer of complexity. Biochimica Biophysica Acta, 1779: 432-437.
  • HAN, J.H., Kushner, S.A., Yiu, A.P., Hsiang, H.L., Buch, T., Waisman, A., Bontempi, B., Neve, R.L., Frankland, P.W., Josselyn, S.A. (2009): Selective erasure of a fear memory. Science, 323: 1492-1496.
  • HE, L., Hannon, G.J. (2004): MicroRNAs: small RNAs with a big role in gene regulation. Nature Reviews of Genetics, 5: 522-531.
  • JAENISCH, R., Bird, A. (2003): Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genetics, 33: 245- 254.
  • KEE, D., Cherry, B., McBride, D., Neale, P., Segal, N. (1998): Multi-task analysis of cerebral hemisphere specialization in monozygotic twins discordant for handedness. Neuropsychology, 12: 468-478.
  • KIM, V.N., Han, J., Siomi, M.C. (2009): Biogenesis of small RNAs in animals. Nature Reviews of Molecular Cell Biology, 10: 126-139.
  • KIM, D., Nguyen M.D., Dobbin M.M., Fischer A., Sananbenesi F., Rodgers J.T., Delalle I., Baur J.A., Sui G., Armour S., Puigserver P., Sinclair D.A., Tsai L.H. (2007): SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO Journal, 13: 3169-3179.
  • KUNG, S.S., Chen, T.C., Lin, W.H., Chen, C.C., Chow, W.T. (2001): Q/R RNA editing of the AMPA receptor subunit 2 (GRIA2) transcript evolves no later than the appearance of cartilaginous fishes. FEBS Letters 509: 277-281.
  • LIU, J. (2008): Control of protein synthesis and mRNA degradation by microRNAs. Current Opinions in Cell Biology, 20: 214-221.
  • LOPEZ-ATALAYA, J.P., Barco, A. (2014): Can changes in histone acetylation contribute to memory formation? Trends in Genetics, 30: 529-539.
  • MARTIN S.J., Morris R.G. (2002): New life in an old idea: the synaptic plasticity and memory hypothesis revisited. Hippocampus, 12: 609-636.
  • MARTÍNEZ-MORGA, M., Martínez, S. (2016): Desarrollo y plasticidad del cerebro. Revista de Neurología, 62: S3-S8.
  • MCGOWAN, P.O., Sasaki, A., D'Alessio, A.C., Dymov, S., Labonté, B., Szyf, M., Turecki, G., Meaney, M.J. (2009): Epigenetic regulation of the glucocorticoid receptor in hu-man brain associates with childhood abuse Nature Neuroscience, 12, 342-348.
  • MICHEL, G.F. (2012): Using knowledge of development to promote recovery of function after brain damage. Developmental Psychobiology, 54: 350-356.
  • MISERENDINO M.J.D., Sananes C.B., Melia K.R., Davis M. (1990): Blocking of acquisition but not expression of conditioned fear potentiated startle by NMDA antagonists in the amygdala. Nature, 345: 716-718.
  • MOAZED, D. (2009): Small RNAs in transcriptional gene silencing and genome defence. Nature, 457: 413-420.
  • MONOD, J. (1970): Le hasard et la nécessité, éd. du Seuil, Paris, pp. 37-38
  • MORA, F. (2011): El dios de cada uno. Por qué la neurociencia niega la existencia de un dios universal. Alianza Editorial, Madrid.
  • NABAVI S., Fox R., Proulx C.D., Lin J.Y., Tsien R.Y., Malinow R. (2014): Engineering a memory with LTD and LTP. Nature, 511: 348-352
  • PARK, H.Y., Lim, H., Yoon, Y.J., Follenzi, A., Nwokafor, C., Melissa Lopez-Jones, M., Meng, X., Robert H. Singer, R.H. (2014): Visualization of dynamics of single endog-enous mRNA labeled in live mouse. Science, 343: 422-424.
  • PATON J.J., Belova M.A., Morrison S.E., Salzman C.D. (2006): The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature, 439: 865-870.
  • REDONDO R.L., Kim J., Arons A.L., Ramírez S., Liu, X., Tonegawa S. (2014): Bidirectional switch of the valence associated with a hippocampal contextual memory engram. Nature, 513: 426-430.
  • SCHALCH, T., Job, G., Shanker, S., Partridge, J.F., Joshua-Tor, L. (2012): The Chp1-Tas3 core is a multifunctional platform critical for gene silencing by RITS. Nature Structural and Molecular Biology, 18: 1351–1357.
  • SIOMI, H., Siomi, M.C. (2009): On the road to reading the RNA-interference code. Nature, 457: 396-404.
  • TURNER, B.M. (2007): Defining an epigenetic code. Nature Cell Biology, 9: 2-6.
  • WADDINGTON, C. H. (1942): Canalization of development and the inheritance of acquired characters. Nature, 150: 563–565.
  • WADDINGTON, C. H. (1942): The epigenotype. Endeavour, 1: 18-20.
  • WEAVER, I.C.G., Cervoni, N., Champagne, F.A., D'Alessio, A.C., Sharma, S., Seckl, J.R., Dymov, S., Szyf, M., Michael J Meaney, M.J. (2004): Epigenetic programming by maternal behavior. Nature Neuroscience, 7: 847-854.
  • WILSON, E.O. (1998): The biological basis of morality. The Atlantic Monthly, 281: 53-70.
  • WU, H, Sun, Y.E. (2006): Epigenetic regulation of stem cell differentiation. Pediatric Researchs, 59: 21R-25R.
  • ZAMORE, P.D., Haley, B. (2005): Ribogenome: the big world of small RNAs. Science, 309: 1519-1524.
  • ZOLA-MORGAN, S., Squire, L.R., Álvarez-Royo, P., Clower, R.P. (1991): Independence of memory functions and emotional behavior: separate contributions of the hippocampal formation and the amygdala. Hippocampus, 1: 207-220.