Valorization of a high-acidity residual oil generated in the waste cooking oils recycling industries

  1. Álvarez-Mateos, P. 1
  2. García-Martín, J. F. 1
  3. Guerrero-Vacas, F. J. 1
  4. Naranjo-Calderón, C. 1
  5. Barrios-Sánchez, C. C. 2
  6. Pérez-Camino, M. C. 3
  1. 1 Universidad de Sevilla, España
  2. 2 Research Centre for Energy, Environment and Technology (CIEMAT), Spain
  3. 3 Instituto de la Grasa, CSIC, España
Revista:
Grasas y aceites

ISSN: 0017-3495 1988-4214

Año de publicación: 2019

Volumen: 70

Número: 4

Tipo: Artículo

DOI: 10.3989/GYA.1179182 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Grasas y aceites

Objetivos de desarrollo sostenible

Resumen

En las industrias de recogida y reciclado de aceites de fritura usados se obtiene una fracción de lodos que contiene un gran porcentaje de aceite con un extremadamente alto índice de acidez ( > 60%). En este trabajo proponemos un esquema de producción de ésteres metílicos basado en la esterificación de los ácidos grasos libres seguida de la transesterificación de los triglicéridos remanentes. Las esterificaciones se llevaron a cabo usando diferentes relaciones molares metanol:aceite y diversos catalizadores en diferentes concentraciones en peso. Los resultados ilustraron que los catalizadores homogéneos alcanzaron mayores rendimientos en la esterificación que los catalizadores heterogéneos. Para mejorar el proceso, se probó una hidrólisis previa con lipasas de Candida rugosa. Finalmente, se llevó a cabo el proceso con las 3 etapas, en las condiciones más favorables de cada una de ellas, obteniendo un 84% en peso de ésteres metílicos, lo que muestra el potencial de este aceite residual como fuente de biodiésel.

Información de financiación

This work was supported by the European Union Funds under grant LIFE 13-Bioseville ENV/1113. The authors are grateful to Grupo BIOSEL for supplying the residual oil.

Financiadores

    • LIFE 13-Bioseville ENV/1113

Referencias bibliográficas

  • Álvarez-Mateos P, Alés-Álvarez FJ, García-Martín JF. 2019. Phytoremediation of highly contaminated mining soils by Jatropha curcas L. and production of catalytic carbons from the generated biomass. J. Environ. Manag. 231, 886-895. https://doi.org/10.1016/j.jenvman.2018.10.052 PMid:30419444
  • Bastidas M, Buelvas LM, Marquez MI, Rodriguez K. 2010 Producción de carbón activado a partir de precursores carbonosos del Departamento del Cesar, Colombia. Inf. Tecnol. 21, 87-96. https://doi.org/10.4067/S0718-07642010000300010
  • Borges ME, Díaz L. 2012. Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review. Renew. Sust. Ener. Rev. 16, 2839-2849. https://doi.org/10.1016/j.rser.2012.01.071
  • Botton V, Piovan L, Meir HF, Mitchell DA, Cordova J, Kriege N. 2018. Optimization of biodiesel synthesis by esterification using a fermented solid produced by Rhizopus microsporus on sugarcane bagasse. Bioprocess Biosyst. Eng. 41, 573-583. https://doi.org/10.1007/s00449-018-1892-5 PMid:29353453
  • Chai M, Tu Q, Lu M, Yang YJ. 2014. Esterification pretreatment of free fatty acid in biodiesel production, from laboratory to industry. Fuel Process. Technol. 125, 106-113. https://doi.org/10.1016/j.fuproc.2014.03.025
  • Chowdhury A, Sarkar D, Mitra D. 2016. Esterification of Free Fatty Acids Derived from Waste Cooking Oil with Octanol: Process Optimization and Kinetic Modeling. Chem. Eng. Technol. 39, 730-740. https://doi.org/10.1002/ceat.201400745
  • Cvengro? J, Cvengro?ová Z. 2004. Used frying oils and fats and their utilization in the production of methyl esters of higher fatty acids. Biomass Bioeng. 27, 173-181. https://doi.org/10.1016/j.biombioe.2003.11.006
  • García-Martín JF, Barios CC, Alés-Álvarez FJ, Domínguez- Sáez A, Álvarez-Mateos P. 2018. Biodiesel production from waste cooking oil in an oscillatory flow reactor. Performance as a fuel on a TDI diesel engine. Renew. Ener. 125 546-556. https://doi.org/10.1016/j.renene.2018.03.002
  • García-Martín JF, Alés-Álvarez FJ, López-Barrera MC, Martín-Domínguez I, Álvarez-Mateos P. 2019. Cetane number prediction of waste cooking oil-derived biodiesel prior to transesterification reaction using near infrared spectroscopy. Fuel 240, 10-15. https://doi.org/10.1016/j.fuel.2018.11.142
  • García-Martín JF, Alés-Álvarez FJ, Torres-García M, Feng CH, Álvarez-Mateos P. 2019. Production of oxygenated fuel additives from residual glycerine using biocatalysts from heavy-metal-contaminated Jatropha curcas L. roots. Energies 12 (4), 740. https://doi.org/10.3390/en12040740
  • García Martín JF, López Barrera MC, Torres García M, Zhang QA, Álvarez Mateos P. 2019. Determination of the acidity of waste cooking oils by near infrared spectroscopy. Processes 7 (5), 304. https://doi.org/10.3390/pr7050304
  • González I, González JA. 2015. Aceites usados de cocina. Problemática ambiental, incidencias en redes de saneamiento y coste del tratamiento en depuradoras. Aguas Resid. Inf. 1-8. Available at: http://www.aguasresiduales. info/revista/articulos/problematica-ambiental-incidencias-en-redes-de-saneamiento-y-coste-del-tratamiento-en-depuradoras-de-los-aceites-usados-en-cocina.
  • Hidayat A, Rochmadi, Wijaya K, Nurdiawati A, Kurniawan W, Hinode H, Yoshikawa K, Budiman A. 2015. Esterification of palm fatty acid distillate with high amount of free fatty acids using coconut shell char based catalyst. Energy Proced. 75, 969-974. https://doi.org/10.1016/j.egypro.2015.07.301
  • Kastner JR, Miller J, Geller DP, Locklin J, Keith LH, Johnson T. 2012. Catalytic esterification of fatty acids using solid acid catalysts generated from biochar and activated carbon. Catal. Today 190, 122-132. https://doi.org/10.1016/j.cattod.2012.02.006
  • Leung DYC, Guo Y. 2006. Transesterification of neat and used frying oil: Optimization for biodiesel production. Fuel Process. Tech. 87, 883-890. https://doi.org/10.1016/j.fuproc.2006.06.003
  • Marchetti JM, Errazu AF. 2008. Esterification of free fatty acids using sulfuric acid as catalyst in the presence of triglycerides. Biomass Bioen. 32, 892-895. https://doi.org/10.1016/j.biombioe.2008.01.001
  • Ministerio de Agricultura y Pesca Alimentacion y Medio Ambiente. 2017. Informe del consumo de alimentación en España 2016', p. 242.
  • Mittelbach M, Enzelsberger H. 1999. Transesterification of heated rapeseed oil for extending diesel fuel. J. Am. Oil Chem. Soc. 76, 545-550. https://doi.org/10.1007/s11746-999-0002-x
  • Nawar WW. 1984. Chemical Changes in Lipids Produced by Thermal Processing. J. Chem. Educ. 61, 299-302. https://doi.org/10.1021/ed061p299
  • Özbay N, Oktar N, Tapan NA. 2008. Esterification of free fatty acids in waste cooking oils (WCO): Role of ion-exchange resins. Fuel 87, 1789-1798. https://doi.org/10.1016/j.fuel.2007.12.010
  • Pereda Marín J, Barriga Mateos F, Álvarez Mateos P. 2003. Aprovechamiento de las oleinas residuales procedentes del proceso de refinado de los aceites vegetales comestibles, para la fabricación de biodiesel. Grasas Aceites 54 (2), 130-137. https://doi.org/10.3989/gya.2003.v54.i2.255
  • Sánchez-Gimeno AC, Benito M, Vercet A, Oria R. 2008. Aceite de oliva virgen extra del Somontano: evaluación de las modificaciones físico-químicas tras la fritura doméstica de patatas prefritas congeladas. Grasas Aceites 59, 57-61. https://doi.org/10.3989/gya.2008.v59.i1.491
  • Uribe LM, López ME, Gonzáles AG. 2013. Activación de carbón mineral mediante proceso físico en horno tubular horizontal y atmósfera inerte. Rev. Colombiana Material. 4, 93-108.
  • Vitiello R, Li C, Russo V, Tesser R, Turco R, Di Serio M. 2017. Catalysis for esterification reactions: a key step in the biodiesel production from waste oils. Rend. Fis. Acc. Lincei, 28, 117-123. https://doi.org/10.1007/s12210-016-0570-2