Solid-State Green Organic Reactions

  1. Menéndez, J. Carlos 1
  2. Clerigué, José 1
  3. Ramos, María Teresa 1
  1. 1 Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad ComplutenseMadridSpain
Libro:
Green Organic Reactions. Materials Horizons: From Nature to Nanomaterials

Editorial: Springer

ISSN: 2524-5384 2524-5392

ISBN: 978-981-33-6897-2 978-981-33-6896-5

Año de publicación: 2021

Páginas: 85-109

Tipo: Capítulo de Libro

DOI: 10.1007/978-981-33-6897-2_6 GOOGLE SCHOLAR lock_openAcceso abierto editor

Resumen

Solid-state synthetic chemistry has some potential advantages that include the absence of solubility issues and solvation phenomena, together with increased environmental friendliness. Mechanochemical synthesis, in particular, has undergone an exponential growth in recent years and has led to the improvement of many previously known transformations and the development of new ones. This chapter is aimed at providing a critical outlook of these developments.

Referencias bibliográficas

  • Obst M, König B (2018) Organic synthesis without conventional solvents. Eur J Org Chem 2018:4213–4232CrossRefGoogle Scholar
  • Oelgemöller M, Hoffmann N (2016) Studies in organic and physical photochemistry-an interdisciplinary approach. Org Biomol Chem 14:7392–7442CrossRefGoogle Scholar
  • Hernández-Linares MG, Guerrero-Luna G, Pérez-Estrada S, Ellison M, Ortín MM, García-Garibay MA (2015) Large-scale green chemical synthesis of adjacent quaternary chiral centers by continuous flow photodecarbonylation of aqueous suspensions of nanocrystalline ketones. J Am Chem Soc 137:1679–1684CrossRefGoogle Scholar
  • Campos LM, Dang H, Ng D, Yang Z, Martinez HL, Garcia-Garibay MA (2002) Engineering reactions in crystalline solids: predicting photochemical decarbonylation from calculated thermochemical parameters. J Org Chem 67:3749–3754CrossRefGoogle Scholar
  • Ihmels H, Scheffer R (1999) The Norrish type II reaction in the crystalline state: toward a better understanding of the geometric requirements for γ-hydrogen atom abstraction. Tetrahedron 55:885–907CrossRefGoogle Scholar
  • Schmidt GMJ (1971) Photodimerization in the solid state. Pure Appl Chem 27:647–678CrossRefGoogle Scholar
  • MacGillivray LR, Reid JL, Ripmeester JA (2000) Supramolecular control of reactivity in the solid state using linear molecular templates. J Am Chem Soc 122:7817–7818CrossRefGoogle Scholar
  • Grobelny AL, Rathb NP, Groeneman RH (2019) Varying the regiochemistry from a solid-state [2 + 2] cycloaddition reaction within a series of mixed co-crystals based upon isosteric resorcinols. J Photochem Photobiol A: Chem 382:111966–111971CrossRefGoogle Scholar
  • Crawford D, Miskimming CKG, Albadarin AB, Walker G, James SL (2017) Organic synthesis by twin screw extrusion (TSE): continuous, scalable and solvent-free. Green Chem 19:1507–1518CrossRefGoogle Scholar
  • Hernández JG, Bolm C (2017) Altering product selectivity by mechanochemistry. J Org Chem 82:4007–4019CrossRefGoogle Scholar Do JL, Friščić T (2017) Mechanochemistry: a force of synthesis. ACS Cent Sci 3:13–19Google Scholar
  • Howard JL, Cao Q, Browne DL (2018) Mechanochemistry as an emerging tool for molecular synthesis: what can it offer? Chem Sci 9:3080–3094CrossRefGoogle Scholar
  • Leonardi M, Villacampa M, Menéndez JC (2018) Multicomponent mechanochemical synthesis. Chem Sci 9:2042–2064CrossRefGoogle Scholar.
  • Tan D, García F (2019) Main group mechanochemistry: from curiosity to established protocols. Chem Soc Rev 48:2274–2292CrossRefGoogle Scholar.
  • Friščić T, Cottillo C, Titi HM (2020) Mechanochemistry for synthesis. Angew Chem Int Ed 59:1018–1029CrossRefGoogle Scholar
  • El-Sayed TH, Aboelnaga A, El-Atawy MA, Hagar M (2018) Ball milling promoted N-heterocycles synthesis. Molecules 23: article nr 1348Google Scholar
  • Leonardi M, Estévez V, Villacampa M, Menéndez JC (2019) Mechanochemical synthesis of biologically relevant heterocycles. In: Ballini R (ed) Green synthetic processes and procedures. Royal Society of Chemistry, London, pp 175–191CrossRefGoogle Scholar
  • Shearouse WC, Shumba MZ, Mack J (2014) A solvent-free, one-step, one-pot Gewald reaction for alkyl-aryl ketones via mechanochemistry. Appl Sci 4:171–179CrossRefGoogle Scholar
  • Akelis L, Rousseau J, Juskenas R, Dodonova J, Rousseau C, Menuel S, Prevost D, Tumkevicius S, Monflier E, Hapiot F (2016) Greener Paal-Knorr pyrrole synthesis by mechanical activation. Eur J Org Chem 2016:31–35CrossRefGoogle Scholar
  • Estévez V, Villacampa M, Menéndez JC (2013) Three-component access to pyrroles promoted by the CAN–silver nitrate system under high-speed vibration milling conditions: a generalization of the Hantzsch pyrrole synthesis. Chem Commun 49:591–593CrossRefGoogle Scholar
  • El-Sayeed TH, Aboelnaga A, Hagar M (2016) Ball milling assisted solvent and catalyst free synthesis of benzimidazoles and their derivatives. Molecules 21:1111. 
Google Scholar
  • Kamur S, Sharma P, Kapoor KK, Hundal S (2008) An efficient, catalyst- and solvent-free, four-component, and one-pot synthesis of polyhydroquinolines on grinding. Tetrahedron 64:536–542
Google Scholar
  • Bose AK, Pednekar S, Ganduly SN, Chakraborty G, Manhas MS (2004) A simplified green chemistry approach to the Biginelli reaction using ‘Grindstone Chemistry’. Tetrahedron Lett 45:8351–8353Google Scholar
  • Tan YJ, Zhang Z, Wang FJ, Wu HH, Li QH (2014) Mechanochemical milling promoted solvent-free imino Diels-Alder reaction catalyzed by FeCl3: diastereoselective synthesis of cis-2, 4-diphenyl-1, 2, 3, 4-tetrahydroquinolines. RSC Adv 4:35635–35638CrossRefGoogle Scholar
  • Kaupp G, Naimi-Jamal MR (2002) Quantitative cascade condensations between o-phenylenediamines and 1,2-dicarbonyl compounds without production of wastes. Eur J Org Chem 2002:1368–1373CrossRefGoogle Scholar
  • Kaupp G, Naimi-Jamal MR, Schmeyers J (2002) Quantitative reaction cascades of ninhydrin in the solid state. Chem Eur J 8:594–600CrossRefGoogle Scholar
  • Muthusaravanan S, Sasikumar C, Devi Bal B, Perumal S (2014) An eco-friendly three-component regio- and stereoselective synthesis of highly functionalized dihydroindeno[1,2-b]pyrroles under grinding. Green Chem 16:1297–1304CrossRefGoogle Scholar
  • Kaupp G, Schmeyers J, Boy J (2000) Iminium salts in solid-state syntheses giving 100% yield. J Prakt Chem 342:269–280CrossRefGoogle Scholar
  • Estévez V, Sridharan V, Sabaté S, Villacampa M, Menéndez JC (2016) Three-component synthesis of pyrrole-related nitrogen heterocycles by a Hantzsch-type process: comparison between conventional and high-speed vibration milling conditions. Asian J Org Chem 5:652–662CrossRefGoogle Scholar
  • Leonardi M, Villacampa M, Menéndez JC (2017) High-speed vibration-milling-promoted synthesis of symmetrical frameworks containing two or three pyrrole units. Beilstein J Org Chem 13:1957–1962CrossRefGoogle Scholar
  • Jicsinszky L, Caporaso M, Martina K, Calcio Gaudino E, Cravotto G (2016) Efficient mechanochemical synthesis of regioselective persubstituted cyclodextrins. Beilstein J Org Chem 12:2364–2371CrossRefGoogle Scholar
  • Patil PR, Kartha KPR (2008) Solvent-free mechanochemical synthesis of aryl glycosides. J Carbohydr Chem 27:411–419CrossRefGoogle Scholar
  • Đud M, Margetić D (2017) Solvent-free mechanochemical deprotection of N-Boc group. Int J Org Chem 7:140–144CrossRefGoogle Scholar
  • Declerck V, Nun P, Martinez J, Lamaty F (2009) Solvent-free synthesis of peptides. Angew Chem Int Ed 48:9318–9321CrossRefGoogle Scholar
  • Hernández JG, Juaristi E (2010) Green synthesis of α, β- and β, β-dipeptides under solvent-free conditions. J Org Chem 75:7107–7111CrossRefGoogle Scholar
  • Landeros JM, Juaristi E (2017) Mechanochemical synthesis of dipeptides using Mg-Al hydrotalcite as activating agent under solvent-free reaction conditions. Eur J Org Chem 2017:687–694CrossRefGoogle Scholar
  • Gonnet L, Tintillier T, Venturini N, Konnert L, Hernández JF, Lamaty F, Laconde G, Martinez J, Colacino E (2017) N-Acyl benzotriazole derivatives for the synthesis of dipeptides and tripeptides and peptide biotinylation by mechanochemistry. ACS Sustainable Chem Eng 5:2936–2941CrossRefGoogle Scholar
  • Bonnamour J, Métro TX, Martinez J, Lamaty F (2013) Environmentally benign peptide synthesis using liquid-assisted ball-milling: Application to the synthesis of Leu-enkephalin. Green Chem 15:1116–1120CrossRefGoogle Scholar
  • Maurin O, Verdié P, Subra G, Lamaty F, Martinez J, Métro TX (2017) Peptide synthesis: ball-milling, in solution, or on solid support, what is the best strategy? Beilstein J Org Chem 13:2087–2093CrossRefGoogle Scholar
  • Crossey K, Cunningham RN, Redpath P, Migaud ME (2015) Atom efficient synthesis of pyrimidine and purine nucleosides by ball milling. RSC Adv 5:58116–58119CrossRefGoogle Scholar
  • Eguaogie O, Conlon PF, Ravalico F, Sweet JS, Elder TB, Conway LP, Lennon ME, Hodgson DRW, Vyle JS (2017) Nucleophilic displacement reactions of 5′-derivatised nucleosides in a vibration ball mill. Beilstein J Org Chem 13:87–92CrossRefGoogle Scholar
  • Appy L, Depaix A, Bantreil X, Lamaty F, Peyrottes S, Roy B (2019) Straightforward ball-milling access to dinucleoside 5’,5’-polyphosphates via phosphorimidazolide intermediates. Chem Eur J 25:2477–2481CrossRefGoogle Scholar
  • Hu H, Li H, Zhang Y, Chen Y, Huang Z, Huang A, Zhu Y, Qin X, Lin B (2015) Green mechanical activation-assisted solid phase synthesis of cellulose esters using a co-reactant: effect of chain length of fatty acids on reaction efficiency and structure properties of products. RSC Adv 5:20656–20662CrossRefGoogle Scholar
  • Ardila-Fierro KJ, Pich A, Spehr M, Hernández JG, Bolm C (2019) Synthesis of acylglycerol derivatives by mechanochemistry. Beilstein J Org Chem 15:811–817CrossRefGoogle Scholar
  • Chauhan P, Chimni SS (2012) Mechanochemistry assisted asymmetric organocatalysis: a sustainable approach. Beilstein J Org Chem 8:2132–2141CrossRefGoogle Scholar
  • Ávila-Ortiz CG, Pérez-Venegas M, Vargas-Caporali J, Juaristi E (2019) Recent applications of mechanochemistry in enantioselective synthesis. Tetrahedron Lett 60:1749–1757CrossRefGoogle Scholar
  • Rodríguez B, Rantanen T, Bolm C (2006) Solvent-free asymmetric organocatalysis in a ball mill. Angew Chem Int Ed 45:6924–6926CrossRefGoogle Scholar
  • Hernández JG, Juaristi E (2011) Asymmetric aldol reaction organocatalyzed by (S)-proline-containing dipeptides: improved stereoinduction under solvent-free conditions. J Org Chem 76:1464–1467CrossRefGoogle Scholar
  • Chauhan P, Chimni SS (2012) Grinding-assisted asymmetric organocatalysis: a solvent-free approach to the formation of vicinal quaternary and tertiary stereocenters. Asian J Org Chem 1:138–141CrossRefGoogle Scholar
  • Valle-Orero J, Rivas-Pardo JA, Tapia-Rojo R, Popa I, Echelman DJ, Haldar S, Fernández JM (2017) Mechanical deformation accelerates protein ageing. Angew Chem Int Ed 129:9873–9878CrossRefGoogle Scholar
  • Hanefeld U, Cao L, Magner E (2013) Enzyme immobilisation: fundamentals and application. Chem Soc Rev 42:6211–6212CrossRefGoogle Scholar
  • Pérez-Venegas M, Reyes-Rangel G, Neri A, Escalante J, Juaristi E (2017) Mechanochemical enzymatic resolution of N-benzylated-β3-amino esters. Beilstein J Org Chem 13:1728–1734CrossRefGoogle Scholar
  • Weißbach U, Dabral S, Konnert L, Bolm C, Hernández JG (2017) Selective enzymatic esterification of lignin model compounds in the ball mill. Beilstein J Org Chem 13:1788–1795CrossRefGoogle Scholar
  • Hernández JG, Ardila-Fierro KJ, Crawford D, James SL, Bolm C (2017) Mechanoenzymatic peptide and amide bond formation. Green Chem 19:2620–2625CrossRefGoogle Scholar
  • Ardila-Fierro KJ, Crawford D, Körner A, James SL, Bolm C, Hernández JG (2018) Papain-catalysed mechanochemical synthesis of oligopeptides by milling and twin-screw extrusion: application in the Julia-Colonna enantioselective epoxidation. Green Chem 20:1262–1269CrossRefGoogle Scholar
  • Tan D, Loots L, Friščić T (2016) Towards medicinal mechanochemistry: evolution of milling from pharmaceutical solid form screening to the synthesis of active pharmaceutical ingredients (APIs). Chem Commun 52:760–7781CrossRefGoogle Scholar
  • André V, Hardeman A, Halasz I, Stein RS, Jackson GJ, Reid DG, Duer MJ, Curfs C, Duarte MT, Friščić T (2011) Mechanosynthesis of the metallodrug bismuth subsalicylate from Bi2O3 and structure of bismuth salicylate without auxiliary organic ligands. Angew Chem Int Ed 50:7858–7861CrossRefGoogle Scholar
  • Tan D, Štrukil V, Mottillo C, Friščić T (2014) Mechanosynthesis of pharmaceutically relevant sulfonyl-(thio)ureas. Chem Commun 50:5248–5250CrossRefGoogle Scholar
  • Konnert L, Reneaud B, de Figueiredo RM, Campagne JM, Lamaty F, Martinez J, Colacino E (2014) Mechanochemical preparation of hydantoins from amino esters: application to the synthesis of the antiepileptic drug phenytoin. J Org Chem 79:10132–10142CrossRefGoogle Scholar
  • Colacino E, Porcheddu A, Charnay C, Delogu F (2019) From enabling technologies to medicinal mechanochemistry: an eco-friendly access to hydantoin-based active pharmaceutical ingredients. React Chem Eng 4:1179–1188CrossRefGoogle Scholar
  • Colacino E, Porcheddu A, Halasz I, Charnay C, Delogu F, Guerra R, Fullenwarth J (2018) Mechanochemistry for “no solvent, no base” preparation of hydantoin-based active pharmaceutical ingredients: nitrofurantoin and dantrolene. Green Chem 20:2973–2977CrossRefGoogle Scholar
  • Porcheddu A, Delogu F, De Luca L, Colacino E (2019) From Lossen transposition to solventless “medicinal mechanochemistry” ACS Sustain Chem Eng 7:12044–12051Google Scholar
  • Estévez V, Villacampa M, Menéndez JC (2014) Concise synthesis of atorvastatin lactone under high-speed vibration milling conditions. Org Chem Front 1:458–463CrossRefGoogle Scholar
  • Lamour S, Pallmann S, Haas M, Trapp O (2019) Prebiotic sugar formation under nonaqueous conditions and mechanochemical acceleration. Life 9:52CrossRefGoogle Scholar
  • Bolm C, Mocci R, Schumacher C, Turberg M, Puccetti F, Hernández JG (2018) Mechanochemical activation of iron cyano complexes: a prebiotic impact scenario for the synthesis of α-amino acid derivatives. Angew Chem Int Ed 57:2423–2446CrossRefGoogle Scholar
  • Içli B, Christinat N, Tönnemann J, Schüttler C, Scopelliti R, Severin K (2009) Synthesis of molecular nanostructures by multicomponent condensation reactions in a ball mill. J Am Chem Soc 131:3154–3155CrossRefGoogle Scholar
  • Pascu M, Ruggi A, Scopelliti R, Severin K (2013) Synthesis of borasiloxane-based macrocycles by multicomponent condensation reactions in solution or in a ball mill. Chem Comm 49:45–47CrossRefGoogle Scholar
  • Hsueh SY, Cheng KW, Lai CC, Chiu SH (2008) Efficient solvent-free syntheses of [2]- and [4]rotaxanes. Angew Chem Int Ed 47:4436–4439CrossRefGoogle Scholar
  • Holler M, Stoerkler T, Louis A, Fischer F, Nierengarten JF (2019) Mechanochemical solvent-free conditions for the synthesis of pillar[5]arene-containing [2]rotaxanes. Eur J Org Chem 21:3401–3405CrossRefGoogle Scholar
  • Wang GW, Komatsu K, Murata Y, Shiro M (1997) Synthesis and X-ray structure of dumb-bell-shaped C120. Nature 387:583–586CrossRefGoogle Scholar
  • Wang GW, Zhang TH, Hao EH, Jiao LJ, Murata Y, Komatsu K (2003) Solvent-free reactions of fullerenes and N-alkylglycines with and without aldehydes under high-speed vibration milling. Tetrahedron 59:55–60CrossRefGoogle Scholar
  • Zhu SE, Li F, Wang GW (2013) Mechanochemistry of fullerenes and related materials. Chem Soc Rev 42:7535–7570CrossRefGoogle Scholar
  • Li X, Liu L, Qin Y, Wu W, Guo ZX, Dai L, Zhu D (2003) C60 modified single-walled carbon nanotubes. Chem Phys Lett 377:32–36CrossRefGoogle Scholar
  • Posudievsky OY, Khazieieva OA, Koshechko VG, Pokhodenko VD (2012) Preparation of graphene oxide by solvent-free mechanochemical oxidation of graphite. J Mater Chem 22:12465–12467CrossRefGoogle Scholar
  • Jeon IY, Choi HJ, Jung SM, Seo JM, Kim MJ, Dai L, Baek JB (2012) Large-scale production of edge-selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction. J Am Chem Soc 135:1386–1393CrossRefGoogle Scholar
  • Li J, Nagamani C, Moore JS (2015) Polymer mechanochemistry: from destructive to productive. Acc Chem Res 48:2181–2190CrossRefGoogle Scholar
  • Ravnsbæk JB, Swager TM (2014) Mechanochemical synthesis of poly(phenylene vinylenes). ACS Macro Lett 3:305–309CrossRefGoogle Scholar
  • Grätz S, Wolfrum B, Borchardt L (2017) Mechanochemical Suzuki polycondensation—from linear to hyperbranched polyphenylenes. Green Chem 19:2973–2979CrossRefGoogle Scholar
  • Grätz S, Zink S, Kraffczyk H, Rose M, Borchardt L (2019) Mechanochemical synthesis of hyper-crosslinked polymers: influences on their pore structure and adsorption behaviour for organic vapors. Beilstein J Org Chem 15:1154–1161CrossRefGoogle Scholar
  • Ohn N, Shin J, Kim SS, Kim JG (2017) Mechanochemical ring-opening polymerization of lactide: liquid-assisted grinding for the green synthesis of poly(lactic acid) with high molecular weight. Chemsuschem 10:3529–3533CrossRefGoogle Scholar
  • Di Nardo T, Hadad C, Van Nhien AN, Moores A (2019) Synthesis of high molecular weight chitosan from chitin by mechanochemistry and aging. Green Chem 21:3276–3285CrossRefGoogle Scholar
  • Ohn N, Kim JG (2018) Mechanochemical post-polymerization modification: solvent-free solid-state synthesis of functional polymers. ACS Macro Lett 7:561–565CrossRefGoogle Scholar
  • Zhang R, Tao CA, Chen R, Wu L, Zou X, Wang J (2018) Ultrafast synthesis of Ni-MOF in one minute by ball milling. Nanomaterials 8:E1067CrossRefGoogle Scholar
  • Crawford D, Casaban J, Haydon R, Giri N, McNally T, James SL (2015) Synthesis by extrusion: continuous, large-scale preparation of MOFs using little or no solvent. Chem Sci 6:1645–1649CrossRefGoogle Scholar
  • Friščić T (2012) Supramolecular concepts and new techniques in mechanochemistry: cocrystals, cages, rotaxanes, open metal–organic frameworks. Chem Soc Rev 41:3493–3510CrossRefGoogle Scholar
  • Friščić T, Fábián L (2009) Mechanochemical conversion of a metal oxide into coordination polymers and porous frameworks using liquid-assisted grinding (LAG). CrystEngComm 11:743–745CrossRefGoogle Scholar
  • Nadizadeh Z, Naimi-Jamal MR, Panahi L (2018) mechanochemical solvent-free in situ synthesis of drug-loaded {Cu2(1,4-bdc)2(dabco)}n MOFs for controlled drug delivery. J Solid State Chem 259:35–42Google Scholar
  • Wei TH, Wu SH, Huang YD, Lo WS, Williams BP, Chen SY, Yang HC, Hsu YS, Lin ZY, Chen XH, Kuo, PE, Choy LY, Tsung CK, Shieh FK (2019) Rapid mechanochemical encapsulation of biocatalysts into robust metal-organic frameworks. Nat Commun 10: article nr. 5002Google Scholar
  • Papaefstathiou GS, MacGillivray LR (2001) Discrete versus infinite molecular self-assembly:  control in crystalline hydrogen-bonded assemblies based on resorcinol. Org Lett 3:3835–3838.Google Scholar
  • Friščić T, MacGillivray LR (2003) ‘Template-switching’: a supramolecular strategy for the quantitative, gram-scale construction of a molecular target in the solid state. Chem Commun 2003:1306–1307
Google Scholar
  • Hernández JG (2017) Mechanochemical borylation of aryldiazonium salts; merging light and ball milling. Beilstein J Org Chem 13:1463–1469CrossRefGoogle Scholar
  • Štrukil VS, Sajko I (2017) Mechanochemically-assisted solid-state photocatalysis (MASSPC). Chem Commun 53:9101–9104CrossRefGoogle Scholar
  • Crawford D (2017) Solvent-free sonochemistry: sonochemical organic synthesis in the absence of a liquid medium. Beilstein J Org Chem 13:1850–1856CrossRefGoogle Scholar
  • Roy D, James SL, Crawford D (2019) Solvent-free sonochemistry as a route to pharmaceutical co-crystals. Chem Commun 55:5463–5466CrossRefGoogle Scholar
  • Do JL, Friščić T (2017) Chemistry 2.0: developing a new, solvent-free system of chemical synthesis based on mechanochemistry. Synlett 28:2066–2092CrossRefGoogle Scholar