Estudio de los marcadores del metabolismo energético cerebral en el líquido cefalorraquídeo del perro

  1. Seisdedos Benzal, Alejandro
Dirigida por:
  1. Alba Galán Rodríguez Director/a
  2. María del Mar Granados Machuca Codirector/a

Universidad de defensa: Universidad de Córdoba (ESP)

Fecha de defensa: 27 de abril de 2021

Tribunal:
  1. Ana Muñoz Juzado Presidente/a
  2. María Mar López Murcia Secretario/a
  3. Cristina Fragío Arnold Vocal

Tipo: Tesis

Resumen

1. introducción o motivación de la tesis En la actualidad, tanto en medicina humana como en medicina veterinaria, se investiga constantemente con el fin de encontrar nuevas técnicas diagnósticas y nuevos marcadores que sirvan como indicador pronóstico de la evolución de una enfermedad. De esta manera, conociendo en profundidad la fisiopatología de una enfermedad, se podrá conseguir un diagnóstico más precoz y en consiguiente, un tratamiento más efectivo para la misma. En el caso concreto de las enfermedades que afectan al sistema nervioso central (SNC), la obtención de muestras para el diagnóstico es complicada. El SNC se compone del parénquima nervioso, las meninges y el líquido cefalorraquídeo (LCR). Este último es un líquido resultante del filtrado del plasma y de la secreción membranosa, por lo que su composición difiere de la del plasma. En condiciones fisiológicas se trata de un fluido transparente con muy poca celularidad y baja concentración de proteínas. El LCR mantiene un contacto estrecho con el parénquima nervioso, por lo que las alteraciones que se producen en el tejido neuronal pueden verse reflejadas en la composición del LCR. Su obtención se lleva a cabo mediante punción en cisterna cerebelomedular o en espacio lumbosacro, para lo cual es necesaria la anestesia general del paciente. Una de las tendencias actuales en medicina humana se centra en buscar biomarcadores en LCR que reflejen cambios en el ratio metabólico cerebral que puedan ser justificados por determinadas patologías. Estudios como el de Parnetti y col. (2000) o el de Liguori y col. (2015) encuentran niveles anormalmente altos de lactato y piruvato en personas con Alzheimer, demencia vascular, meningitis infecciosa y linfoma. Alteraciones similares han sido descritas por Pugliese y col. (2005) en perros con un grado severo de disfunción cognitiva. En medicina veterinaria exiten relativamente pocos estudios que relacionen las alteraciones en las concentraciones de neurotransmisores, enzimas y sustratos metabólicos neuronales con diferentes patologías. Además, los estudios que establecen rangos fisiológicos de referencia en el perro son aún más escasos y variables. En base a ello, resulta necesario llevar a cabo estudios basales en pacientes sanos. Dichos estudios deberían tener en cuenta parámetros como la raza, edad, sexo, lugar de punción y protocolo anestésico utilizado para la toma de muestras, ya que los agentes anestésicos pueden interferir en el ratio metabólico celular. El pilar esencial del estudio de la fisiología del metabolismo energético cerebral (MEC) se fundamenta en el hecho de que la actividad neuronal está íntimamente ligada al flujo sanguíneo cerebral y al metabolismo energético. La reducción en el aporte de sangre y nutrientes al parénquima encefálico se traduce en una alteración del metabolismo glucídico oxidativo, obligando a las neuronas a emplear rutas metabólicas alternativas que van a producir metabolitos detectables en el LCR. Como ocurre en el síndrome de disfunción cognitiva canina (SDCC), la alteración del metabolismo oxidativo provoca una cascada metabólica que conlleva una menor producción de ATP. Esto comporta una reducción de la actividad de la bomba Na+-K+-ATPasa, provocando el aumento del K+ extracelular, el bloqueo de la despolarización neuronal y el deterioro de la función cognitiva. Hasta la fecha se conoce que tanto personas con demencia como perros con SDCC se benefician de la ingesta de dietas enriquecidas con antioxidantes, vitaminas, ácidos grasos omega 3 y triglicéridos de cadena media. Sin embargo, en el perro, no se ha determinado el impacto real de este tratamiento nutricional en el metabolismo cerebral. Con el presente estudio se pretende profundizar en el conocimiento de la composición del LCR en perros sanos atendiendo a los siguientes factores: (i) la obtención de datos que contribuyan a establecer unos valores de referencia de determinados biomarcadores del MEC, (ii) la observación de las fluctuaciones de dichos marcadores en pacientes sometidos a suplemento dietético con nutracéuticos, (iii) la detección de posibles variaciones de estos parámetros en función del protocolo anestésico utilizado, o (iv) en función del lugar de extracción de LCR. 2.contenido de la investigación Para el desarrollo de esta tesis doctoral se escogieron perros de raza Beagle sanos, a los que se sometió a una primera anestesia general para extraer líquido cefalorraquídeo con el objetivo de medir niveles de lactato (1,189 mM/L), piruvato (0,0577 mM/L) y ratio lactato/piruvato (44,247) en muestras extraídas en cisterna cerebelomedular. Tras obtener los niveles basales de estos biomarcadores, evaluamos el efecto de la suplementación de la dieta con nutracéuticos. Para ello, los animales fueron anestesiados en dos ocasiones, con una separación de 50 días, tiempo durante el cual estuvieron tomando el suplemento nutricional. Obtenemos muestras de líquido cefalorraquídeo antes y después del tratamiento para medir proteínas totales (21 g/dL), recuento de células nucleadas (< 5 células/µL), glucosa (59 mg/dL), sodio (151 mM/L), cloro (132 mM/L), potasio (2,96 mM/L), lactato (1,53 mM/L), piruvato (0,028 mM/L) y su ratio (16,2). Tras el tratamiento observamos que los niveles de sodio (160 mM/L) y glucosa (73 mg/dL) aumentaron significativamente a la vez que disminuyeron los valores de lactato (1,21 mM/L) y el ratio lactato/piruvato (9,9), poniendo de manifiesto la mejoría en el estado oxidativo del encéfalo. Para valorar el efecto de los agentes anestésicos y el tiempo de duración de la anestesia en los biomarcadores del metabolismo energético cerebral, sometimos a todos los animales a dos anestesias, una exclusivamente con isofluorano y otra con propofol. Medimos valores de lactato, piruvato, glutamato, glucosa, creatin kinasa, proteínas totales y electrolitos en dos tiempos diferentes, una vez a los 15 minutos de la inducción anestésica (T0) y por segunda vez a las 3 horas de la inducción (T3). Observamos que los valores de lactato en el grupo anestesiado con propofol fueron significativamente más bajos en T3 (1,02 mM/L) que en T0 (1,4 mM/L). Sin embargo, en el grupo de perros anestesiados exclusivamente con isofluorano, los valores de lactato en T3 (1,58 mM/L) mostraron una tendencia a aumentar con el tiempo anestésico (T0 = 1,43 mM/L). Finalmente, para valorar el efecto del lugar de extracción del líquido cefalorraquídeo, llevamos a cabo la medición de lactato en cisterna cerebelomedular y cisterna lumbar. Para la extracción de líquido cefalorraquídeo empleamos el mismo procedieminto anestésico descrito en el párrafo anterior. Observamos resultados significativamente mayores de lactato en cisterna lumbar (1,58 mM/L) en comparación con los obtenidos en cisterna magna (1,44 mM/L). De esta forma se corrobora el flujo rostrocaudal del líquido cefalorraquídeo en el sistema nervioso central del perro, al igual que en humanos y en el caballo. 3.conclusión Las mediciones de determinados marcadores del MEC en LCR en el perro de raza Beagle van a sufrir modificaciones asociadas a factores como el momento y el punto de extracción de la muestra, el protocolo anestésico utilizado y el tratamiento previo. El veterinario debe conocer los posibles cambios que pueden sufrir los diferentes biomarcadores con el objetivo de evitar errores en el proceso diagnóstico. Por lo tanto, las conclusiones de esta tesis son las siguientes: 1. La determinación de lactato, piruvato y ratio L/P en LCR de 18 perros sanos de raza Beagle nos permite establecer las bases para la elaboración de un rango fisiológico de estos biomarcadores del MEC en cisterna magna. El empleo de un mismo protocolo anestésico en todos los perros y la utilización de la misma cohorte de edad reduce el sesgo de los datos observado en estudios previos. 2. Tras 50 días de tratamiento con nutracéuticos (Aktivait®), los valores de glucosa y sodio en LCR aumentaron de forma significativa, mientras que los niveles de lactato y ratio L/P descendieron. Estos datos sugieren una mejoría en el estado oxidativo del MEC tras el tratamiento en estos perros. Las proteínas totales, recuento celular, cloro, potasio y piruvato permanecieron sin cambios. 3. Tanto el protocolo anestésico como el momento de extracción del LCR influyen en la concentración de biomarcadores del MEC. En T0 no se observaron diferencias significativas; sin embargo, en T3, en el grupo-Propo se observa una disminución significativa de los niveles de lactato, mientras que en el grupo-Iso el lactato tiende a aumentar. La necesidad de anestesiar a los perros para la extracción de LCR y las diferencias observadas en nuestro estudio condicionan que se deba tener en cuenta las variaciones de biomarcadores del MEC generadas por el agente anestésico empleado. 4. La concentración de lactato en LCR fue mayor en las muestras obtenidas en cisterna lumbar en comparación con las obtenidas en cisterna cerebelomedular en perros de raza Beagle. Estos resultados ponen de manifiesto el flujo eminentemente rostrocaudal del LCR en el SNC en el perro. 4. bibliografía 1.-Abdelhak A, Hottenrott T, Mayer C, Hintereder G, Zettl UK, Stich O, Tumani H. (2017) CSF profile in primary progressive multiple sclerosis: re-exploring the basics. PloS One 12(8), e0182647. 2.-Akaishi T, Takahashi T, Nakashima I. (2018) Chloride imbalance between serum and CSF in the acute phase of neuromyelitis optica. J Neuroimmunol 315(15), 45-49. 3.-Albanese M, Zagaglia S, Landi D, Boffa L, Nicoletti CG, Marciani MG, Mandolesi G, Marfia GA, Buttari F, Mori F, Centonze D. (2016) Cerebrospinal fluid lactate is associated with multiple sclerosis disease progression. J Neuroinflammation 10, 13-36. 4.-Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, Gamst A, Holtzman DM, Jagust WJ, Petersen RC, Snyder PJ, Carrillo MC, Thies B, Phelps CG. (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3), 270-279. 5.-Almeida L, Lochner M, Berod L, Sparwasser T. (2016) Metabolic Pathways in T cell activation and lineage differentiation. Semin Immunol 28(5), 514-524. 6.-Anderson KJ, Scheff SW, Miller KM, Roberts KN, Gilmer LK, Yang C, Shaw G. (2008) The phosphorylated axonal form of the neurofilament subunit NF-H (pNF-H) as a blood biomarker of traumatic brain injury. J Neurotrauma 25(9), 1079-1085. 7.Andrews FM, Matthews HK, Reed SM (1990). The ancillary techniques and test for diagnosing equine neurological disease. Vet Med. 85, 1325-1330. 8.-Aronson JK, Ferner RE. (2017) Biomarkers—A General Review. Curr Protoc Pharmacol 76(9), 1-17. 9.-Aronson JK. (2012) Research priorities in biomarkers and surrogate end-points. Br J Clin Pharmacol 73(6), 900-907. 10.-Aronson JK. (2017) Defining ‘nutraceuticals’: neither nutritious nor pharmaceutical. Br J Clin Pharmacol 83(1), 8-19. 11.-Bailey E, Domenico P, Cunha BA. (2016) Bacterial or viral meningitis? Measuring lactate in CSF can help you know quickly. Postgrad Med 88(5), 217-219, 223. 12.-Bélanger M, Allaman I, Magistretti PJ. (2011) Differential effects of pro- and anti-inflammatory cytokines alone or in combinations on the metabolic profile of astrocytes. J Neurochem 116(4), 564-576. 13.-Bélanger M, Magistretti, PJ. (2009) The role of astroglia in neuroprotection. Dialogues Clin Neurosci 11, 281–295. 14.Benoist JF, Alberti C, Leclercq S, Rigal O, Jean-Louis R, Ogier de Baulny H, Porquet D, Biou D. (2003) Cerebrospinal fluid lactate and pyruvate concentrations and their ratio in children: Age-related reference intervals. Clin Chem 49(3), 487-494. 15.-Bernardini M. (2010) Neurologia del cane e del gatto. 2nd ed. Milano,Poletto Editore. 16.-Berndt N, Rösner J, Haq R, Kann O, Kovács R, Holzhütter HG, Spies C, Liotta A. (2018) Possible neurotoxicity of the anesthetic propofol: evidence for the inhibition of complex II of the respiratory chain in area CA3 of rat hippocampal slices. Arch Toxicol 92(10), 3191-3205. 17.-Bönig L, Möhn N, Ahlbrecht J, Wurster U, Raab P, Puppe W, Sühs KW, Stangel M, Skripuletz T, Schwenkenbecher P. (2019). Leptomeningeal metastasis: the role of cerebrospinal fluid diagnostics. Front Neurol 10, 839. 18.-Braun C, Sakamoto A, Fuchs H, Ishiguro N, Suzuki S, Cui Y, Klinder K, Watanabe M, Terasaki T, Sauer A. (2017) Quantification of transporter and receptor proteins in dog brain capillaries and choroid plexus: relevance for the distribution in brain and CSF of selected BCRP and P‑gp substrates. Mol Pharm 14(10), 3436-3447. 19.-Brinton EA, Mason RP. (2017) Prescription omega-3 fatty acid products containing highly purified eicosapentaenoic acid (EPA). Lipids Health Dis 16(1), 23. 20.-Brisby H, Olmarker K, Rosengren L, Cederlund CG, Rydevik B. (1999) Markers of nerve tissue injury in cerebrospinal fluid in patients with lumbar disc herniation and sciatica. Spine (Phila Pa 1976) 24(8), 742-746. 21.-Bruna J, González L, Miró J, Velasco R, Gil M, Tortosa A. (2009) Leptomeningeal carcinomatosis. Prognostic implications of clinical and cerebrospinal fluid features. Cancer 115(2), 381-389. 22.-Burgess RW, Crish SD. (2018) Editorial: Axonopathy in neurodegenerative disease. Front Neurosci 12, 769. 23.-Bustamante R, Aguado D, Cediel R, Gómez de Segura IA, Canfrán S. (2018) Clinical comparison of the effects of isoflurane or propofol anaesthesia on mean arterial blood pressure and ventilation in dogs undergoing orthopaedic surgery receiving epidural anaesthesia. Vet J 233, 49-54. 24.-Butterworth J, Gregory CR, Aronson LR. (1997) Selective alterations of cerebrospinal fluid amino acids in dogs with congenital portosystemic shunts. Metab Brain Dis 12(4), 299-306. 25.-Caines D, Sinclair M, Wood D, Valverde A, Dyson D, Gaitero L, Nykamp S. (2013) Evaluation of cerebrospinal fluid lactate and plasma lactate concentrations in anesthetized dogs with and without intracranial disease. Can J Vet Res 77(4), 297-302. 26.-Calabrese VP, Gruemer HD, James K, Hranowsky N, DeLorenz RJ. (1991) Cerebrospinal fluid lactate levels and prognosis in status epilepticus. Epilepsia 32(6), 816-821. 27.-Canter PH, Wider B, Ernst E. (2007) The antioxidant vitamins A, C, E and selenium in the treatment of arthritis: a systematic review of randomized clinical trials. Rheumatology (Oxford) 46(8), 1223-1233. 28.-Cao F, Yang XF, Liu WG, Hu WW, Li G, Zheng XJ, Shen F, Zhao XQ, Lv ST. (2008) Elevation of neuron-specific enolase and S-100b protein level in experimental acute spinal cord injury. J Clin Neurosci 15(5), 541-544. 29.-Cataldo AM, Broadwell RD. (1986) Cytochemical identification of cerebral glycogen and glucose-6- phosphatase activity under normal and experimental conditions. II. Choroid plexus and ependymal epithelia, endothelia and pericytes. J Neurocytol 15, 511–524. 30.-Cattai A, Rabozzi R, Ferasin H, Isola M, Franci P. (2018) Haemodynamic changes during propofol induction in dogs: new findings and approach of monitoring. BMC Vet Res 14(1), 282. 31.-Chandler WL, Fine JS, Emery M, Weaver D, Reichenbach D, Clayson KJ. (1988) Regional creatine kinase, adenylate kinase, and lactate dehydrogenase in normal canine brain. Stroke 19(2), 251-255. 32.-Chiro GD, Hammock MK, Bleyer WA. (1976) Spinal descent of cerebrospinal fluid in man. Neurology 26(1), 1-8. 33.-Chmelíková E, Bolechová P, Chaloupková H, Svobodová I, Jovicic M, Sedmíková M. (2019) Salivary cortisol as a marker of acute stress in dogs. A review. Domest Anim Endocrinol 72. 34.-Christensen HL, Barbuskaite D, Rojek A, Malte H, Christensen IB, Füchtbauer AC, Füchtbauer EM, Wang T, Praetorius J, Damkier HH. (2018) The choroid plexus sodium-bicarbonate cotransporter NBCe2 regulates mouse cerebrospinal fluid pH. J Physiol 596(19), 4709-4728. 35.-Chuen Choi SY, Collins CC, Gout PW, Wang Y. (2013) Cancer-generated lactic acid: a regulatory, immunosuppressive metabolite? J Pathol 230, 350-355. 36.-Cooper AJ, Jeitner TM. (2016) Central role of glutamate metabolism in the maintenance of nitrogen homeostasis in normal and hyperammonemic brain. Biomolecules 6(2), 16. 37.-Creevy KE, Gagnepain JF, Platt SR, Edwards GL, Kent M. (2013) Comparison of concentrations of _-aminobutyric acid and glutamate in cerebrospinal fluid of dogs with idiopathic epilepsy with and without seizure-related magnetic resonance imaging hyperintense areas in the limbic system. Am J Vet Res 74(8), 1118-1125. 38.-Crupi R, Impellizzeri D, Cuzzocrea S. (2019) Role of metabotropic glutamate receptors in neurological disorders. Front Mol Neurosci 12, 20. 39.-Cunha BA. (2011) Cerebrospinal fluid lactic acid levels: Accurate, fast, and inexpensive. Crit Care 39(10), 2384-5. 40.-Dahms I, Bailey-Hall E, Salem Jr, N. (2016) Kinetics of docosahexaenoic acid ethyl ester accumulation in dog plasma and brain. Prostaglandins Leukot Essent Fatty Acids 113, 1-8. 41.-Daliu P, Santini A, Novellino E. (2018) A decade of nutraceutical patents: where are we now in 2018? Expert Opin Ther Pat 28(12), 875-882. 42.-Damkier HH, Brown PD, Praetorius J. (2013) Cerebrospinal fluid secretion by the choroid plexus. Physiol Rev 93(4), 1847-1892. 43.-Danbolt NC. (2001) Glutamate uptake. Prog Neurobiol 65(1), 1-105. 44.-Dash PC, Patro D. (2014) Role of csf ck, ldh, ggtp enzyme levels in diagnostic and prognostic evaluation of meningitis. J Clin Diagn Res 8(7), 19-22. 45.-Day NPJ, Phu NH, Mai NTH, Chau TTH, Loc PP, Chuong LV, Sinh DX, Holloway P, Hien TT, White NJ. (2000) The pathophysiologic and prognostic significance of acidosis in severe adult malaria. Crit Care Med 28(6), 1833-1840. 46.-de la Monte SM. (2012) Contribution of brain insulin resistance and deficiency in amyloid-related neurodegeneration in Alzheimer´s disease. Drugs 72, 49-66. 47.-De la Hunta A, Glass EN. (2009) Veterinary neuroanatomy and clinical neurology. 3rd ed. St. Louis, Missouri, Saunders-Elsevier. 48.-Demine S, Renard P, Arnould T. (2019) Mitochondrial uncoupling: a key controller of biological processes in physiology and diseases. Cells 8(8), 795. 49.-Di Terlizzi R, Platt S. (2006) The function, composition and analysis of cerebrospinal fluid in companion animals: Part I – Function and composition. Vet J 172, 422-431. 50.-Di Terlizzi R, Platt S. (2009) The function, composition and analysis of cerebrospinal fluid in companion animals: part II - analysis. Vet J 180(1), 15-32. 51.-Díaz-Maroto Cicuéndez I, Fernández-Díaz E, García-García J, Jordán J, Fernández-Cadenas I, Montaner J, Serrano-Heras G, Segura T. (2017) The UCP2‑866G/A polymorphism could be considered as a genetic marker of different functional prognosis in ischemic stroke after recanalization. Neuromolecular Med 19(4), 571-578. 52.-DiBartola SP. (2012) Fluid, Electrolyte, and Acid-Base Disorders. 4th ed. Elseviers Saunders, St. Louis, Missouri. 53.-Djukic M, Schulz D, Schmidt H, Lange P, Nau RZ. (2012) Cerebrospinal fluid findings in geriatric patients from 2008 to 2011. Zeistchrift fur Gerontologia und Geriatrie 46, 353-357. 54.-Donato R. (2001) S100: A multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol 33(7), 637-668. 55.-Dowling ALS, Head E. (2012) Antioxidants in the Canine Model of Human Aging. Biochim Biophys Acta 1822(5), 685-689. 56.-Dubois B, Feldman HH, Jacova C, DeKosky ST, Barberger-Gateau P, Cummings J, Delacourte A, Galasko D, Gauthier S, Jicha G, Meguro K, O´Brien J, Pasquier F, Robert P, Rossor M, Salloway S, Stern Y, Visser PJ, Scheltens P. (2007) Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS–ADRDA criteria. Lancet Neurol 6(8), 734-746. 57.-Dugdale A. (2010) Veterinary Anaesthesia. Principles to Practice. 1st ed. United Kingdom, Willey-Blackwell. 58.-Efros AL, Delehanty JB, Huston AL, Medintz IL, Barbic M, Harris TD. (2018) Evaluating the potential of using quantum dots for monitoring electrical signals in neurons. Nat Nanotechnol 13(4), 278-288. 59.-Ellenberger C, Mevissen M, Doherr M, Scholtysik G, Jaggy A. (2004) Inhibitory and excitatory neurotransmitters in the cerebrospinal fluid of epileptic dogs. Am J Vet Res 65(8), 1108-1113. 60.-Faheem SA, Saeed NM, El-Naga RN, Ayoub IM, Azab SS. (2020) Hepatoprotective effect of cranberry nutraceutical extract in non-alcoholic fatty liver model in rats: impact on insulin resistance and Nrf-2 expression. Front Pharmacol 11, 218. 61.-Falkowska A, Gutowska I, Goschorska M, Nowacki P, Chlubek D, Baranowska-Bosiacka I. (2015) Energy metabolism of the brain, including the cooperation between astrocytes and neurons, especially in the context of glycogen metabolism. Int J Mol Sci 16(11), 25959-25981. 62.-Featherstone DE, Shippy SA. (2008) Regulation of synaptic transmission by ambient extracellular glutamate. Neuroscientist 14(2), 171-181. 63.-Felker GM. (2010) Coenzyme Q10 and statins in heart failure. J Am Coll Cardiol 56(15), 1205-1206. 64.-Ferreira A. (2016) Diagnostic value of creatine kinase activity in canine cerebrospinal fluid. Can Vet J 57(10), 1081-1086. 65.-Finsterer J, Aliyev R. (2017) Chronic inflammatory demyelinating polyneuropathy variant with creatine kinase elevation and vanishing effect of immunoglobulins. Am J Case Rep 18, 834-838. 66.-FitzGerald GA. (2016) Measure for Measure: Biomarker standards and transparency. Sci Transl Med 8(343). 67.-Forsberg M, Seth H, Björefeldt A, Lyckenvik T, Andersson M, Wasling P, Zetterberg H, Hanse E. (2019) Ionized calcium in human cerebrospinal fluid and its influence on intrinsic and synaptic excitability of hippocampal pyramidal neurons in rats. J Neurochem 149(4), 452-470. 68.-Gao X, Liu J, Li L, Liu W, Sun M. (2020) A brief review of nutraceutical ingredients in gastrointestinal disorders: evidence and suggestions. Int J Mol Sci 21(5). 69.-Gazda K, Kuznicki J, Wegierski T. (2017) Knockdown of amyloid precursor protein increases calcium levels in the endoplasmic reticulum. Sci Rep 7(1). 70.-Ghaffari H, Grant SC, Petzold LR, Harrington MG. (2020) Regulation of CSF and brain tissue sodium levels by the blood-CSF and blood-brain barriers during migraine. Front Comput Neusci 14(4). 71.-Gladden LB. (2004) Lactate metabolism: a new paradigm for the third millennium. J Physiol 558(Pt1), 5-30. 72.-Glade MJ, Smith K. (2015) Phosphatidylserine and the human brain. Nutrition 31(6), 781-786. 73.-Gordon GR, Choi HB, Rungta RL, Ellis-Davies GC, and MacVicar BA. (2008) Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 456, 745–749. 74.-Gray LR, Tompkins SC, Taylor EB. (2014) Regulation of pyruvate metabolism and human disease. Cell Mol Life Sci 71, 2577-2604. 75.-Guéz M, Hildingsson C, Rosengren L, Karlsson K, Toolanen G. (2003) Nervous tissue damage markers in cerebrospinal fluid after cervical spine injuries and whiplash trauma. J Neurotrauma 20(9), 853-858. 76.-Guglielmotto M, Giliberto L, Tamagno E, Tabaton M. (2010) Oxidative stress mediates the pathogenic effect of different Alzheimer’s disease risk factors. Front Aging Neurosci 2, 3. 77.-Hall JA, Yerramilli M, Obare E, Yerramilli M, Panickar KS, Bobe G, Jewell DE. (2015) Nutritional interventions that slow the age-associated decline in renal function in a canine geriatric model for elderly humans. J Nutr Health Aging 20(10), 1010-1023. 78.-Hamilton PD, Bozeman SL, Andley UP. (2020) Creatine kinase/α-crystallin interaction functions in cataract development. Biochem Biophys Rep 22, 100748. 79.-Hanselman B, Kruth S, Poma R, Nykamp S. (2006) Hypernatremia and hyperlipidemia in a dog with central nervous system lymphosarcoma. J Vet Intern Med 20(4), 1029-1032. 80.-Head E, Zicker SC. (2004) Nutraceuticals, aging, and cognitive dysfunction. Vet Clin North Am Small Anim Pract 34, 217-228. 81.-Head E. (2009) Oxidative damage and cognitive dysfunction: antioxidant treatment to promote healthy brain aging. Neurochem Res 34, 670-678. 82.-Head E. (2011) Neurobiology of the aging dog. Age (Dordr) 33(3), 486-496. 83.-Heath SE, Barabas S, Craze PG. (2007) Nutritional supplementation in cases of canine cognitive dysfunction—A clinical trial. Appl Anim Behav Sci 105, 284-296. 84.-Herrero-Mendez A, Almeida A, Fernandez E, Maestre C, Moncada S, and Bolanos JP. (2009). The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/ C-Cdh1. Nat Cell Biol 11, 747–752. 85.-Hladky SB, Barrand MA. (2016) Fluid and ion transfer across the blood–brain and blood–cerebrospinal fluid barriers; a comparative account of mechanisms and roles. Fluids Barriers CNS 13(19), 1-69. 86.-Horn T, Klein J. (2010) Lactate levels in the brain are elevated upon exposure to volatile anesthetics: a microdialysis study. Neurochem Int 57(8), 940-947. 87.-Jacobson LS, Lobetti RG. (2005) Glucose, lactate, and pyruvate concentrations in dogs with babesiosis. Am J Vet Res 66(2); 244-250. 88.-Jaggy A. (2010) Small Animal Neurology. An illustrated text. 1st ed. Hannover, Schlütersche. 89.-Jankovic J. (2007) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79(4), 368-376. 90.-Joseph J, Cole G, Head E, Ingram D. (2009) Nutrition, brain aging, and neurodegeneration. J Neurosci 41, 12795-12801. 91.-Kay L, Tokarska-Schlattner M, Quenot-Carrias B, Goudet B, Bugert P, Arnold H, Scheuerbrandt G, Schlattner U. (2017) Creatine kinase in human erythrocytes: A genetic anomaly reveals presence of soluble brain-type isoform. Blood Cells Mol Dis 64, 33-37. 92.-Kayser EB, Sedensky MM, Morgan PG. (2004) The effects of complex I function and oxidative damage on lifespan and anesthetic sensitivity in Caenorhabditis elegans. Mech Ageing Dev 125(6), 455-464. 93.-Kazemi H, Choma L. (1977) H+ transport from CNS in hypercapnia and regulation of CSF [HCO3-]. J Appl Physiol Respir Environ Exerc Physiol 42(5), 667-672. 94.-Kazemi H, Johnson DC. (1986) Regulation of cerebrospinal fluid acid-base balance. Physiol Rev 66(4), 953-1037. 95.-Kazemi H, Valenca LM, Shannon DC. (1969) Brain and cerebrospinal fluid lactate concentration in respiratory acidosis and alkalosis. Respir Physiol 6(2), 178-186. 96.-Keen LE. (2014) Cerebrospinal fluid. Clinical biochemistry, physiology and diagnostic characteristics. 1st ed. New York, Nova Science Publishers. 97.-Kent M, Glass EN, Haley AC, Shaikh LS, Sequel M, Blas-Machado U, Bishop TM, Holmes SP, Platt SR. (2016) Hydrocephalus secondary to obstruction of the lateral apertures in two dogs. Aust Vet J 94(11), 415-422. 98.-Khaladj N, Teebken OE, Hagl C, Wilhelmi MH, Tschan C, Weissenborn K, Lichtinghagen R, Hoy L, Haverich A, Pichlmaier M. (2008) The Role of Cerebrospinal Fluid S100 and Lactate to Predict Clinically Evident Spinal Cord Ischaemia in Thoraco-abdominal Aortic Surgery. Eur J Vasc Endovasc Surg 36(1), 11-19. 99.-Kiewert C, Mdzinarishvili A, Hartmann J, Bickel U, Klein J. (2010) Metabolic and transmitter changes in core and penumbra after middle cerebral artery occlusion in mice. Brain Res 1312C, 101-107. 100.-Kim SA, Lee SY, Kimura J, Shin NS. (2011) Effects of alprazolam on capture stress-related serum cortisol responses in Korean raccoon dogs (Nyctereutes procyonoides koreensis). J Vet Sci 12(1), 103-105. 101.-Kim SH, Fraser PE, Westaway D, St. George-Hyslop PH, Ehrlich ME, Gandy S. (2010) Group II metabotropic glutamate receptor stimulation triggers production and release of alzheimer’s amyloid β42 from isolated intact nerve terminals. J Neurosci 30(11), 3870-3875. 102.-Kim SH, Steele JW, Lee SW, Clemenson GD, Carter TA, Treuner K, Gadient R, Wedel P, Glabe C, Barlow C, Ehrlich ME, Gage FH, Gandy S. (2014) Proneurogenic Group II mGluR antagonist improves learning and reduces anxiety in Alzheimer Aβ oligomer mouse. Mol Psychiatry 19(11), 1235-1242. 103.-Klein BG, Cunningham JG. (2013) Cunningham´s Text Book of Veterinary Physiology. 5th ed. Elseviers Saunders, St. Louis, Missouri. 104.-Kopanke JH, Chen AV, Brune JE, Brenna AC, Thomovsky SA. (2018) Reference intervals for the activity of lactate dehydrogenase and its isoenzymes in the serum and cerebrospinal fluid of healthy canines. Vet Clin Pathol 47(2), 267-274. 105.-Kumosani TA, Moselhy SS. (2011) Modulatory effect of cod-liver oil on Na+-K+-ATPasa in rat´s brain. Hum Exp Toxicol 30, 267-274. 106.-Kunihara T, Shiiya N, Yasuda K, Japan S. (2001) Changes in S100β protein levels in cerebrospinal fluid after thoracoabdominal aortic operations. J Thorac Cardiovas Surg 122(5), 1019-1020. 107.-Kwon BK, Stammers AMT, Bélanger LM, Bernardo A, Chan D, Bishop CM, Slobogean GP, Zhang H, Umedaly H, Giffin M, Street J, Boyd MC, Paquette SJ, Fisher CG, Dvorak MF. (2010) Cerebrospinal fluid inflammatory cytokines and biomarkers of injury severity in acute human spinal cord injury. J Neurotrauma 27(4), 669-682. 108.-LaMonaca E, Fodale V. (2012) Effects of anesthetics on mitochondrial signaling and function. Curr Drug Saf 7(2), 126-139. 109.-Landsberg GM, Nichol J, Araujo JA. (2012) Cognitive dysfunction syndrome: a disease of canine and feline brain aging. Vet Clin North Am Small Anim Pract 42(4), 749-768. 110.-Lannitti T, Palmieri B. (2010) Therapeutical use of probiotic formulations in clinical practice. Clin Nutr 29(6), 701-725. 111.-Lauretani F, Maggio M, Pizzarelli F, Michelassi S, Ruggiero C, Ceda GP, Bandinelli S, Ferrucci L. (2009) Omega-3 and renal function in older adults. Curr Pharm Des 15(36); 4149-4156. 112.-Lee H, Kang H, Sung Ko B, Oh J, Ho Lim T, Cho Y. (2020) Initial creatine kinase level as predictor for delayed neuropsychiatric sequelae associated with acute carbon monoxide poisoning. Am J Emerg Med10.1016/j.ajem.2020.02.054 (publicación electronica previa a la publicación en papel). 113.-Leen WG, Klepper J, Verbeek MM, Leferink M, Hofste T, van Engelen BG, Wevers RA, Arthur T, Bahi-Buisson N, Ballhausen D, Bekhof J, van Bogaert P, Carrilho I, Chabrol B, Champion MP, Coldwell J, Clayton P, Donner E, Evangeliou A, Ebinger F, Farrell K, Forsyth RJ, de Goede CGEL, Gross S, Grunewald S, Holthausen H, Jayawant S, Lachlan K, Laugel V, Leppig K, Lim MJ, Mancini G, Della Marina A, Martorell L, McMenamin J, Meuwissen MEC, Mundy H, Nilsson NO, Panzer A, Poll-The BT, Rauscher C, Rouselle CMR, Sandvig I, Scheffner T, Sheridan E, Simpson N, Sykora P, Tomlinson R, Trounce J, Webb D, Weschke B, Scheffer H, Willemsen MIA (2010). Glucose transporter-1 deficiency syndrome: the expanding clinical and genetic spectrum of a treatable disorder. Brain 133(pt3), 655-670. 114.-Leen WG, Willemsen MA, Wevers RA, Verbeek MM. (2012) Cerebrospinal fluid glucose and lactate: age-specific reference values and implications for clinical practice. PloS One 7(8). 115.-Levine JM, Fosgate GT, Chen AV, Rushing R, Nghiem PP, Platt SR, Bagley RS, Kent M, Hicks DG, Young BD, Schatzberg SJ. (2009) Magnetic resonance imaging in dogs with neurologic impairment due to acute thoracic and lumbar intervertebral disk herniation. J Vet Intern Med 23(6), 1220-1226. 116.-Levy B. (2006) Lactate and shock state: the metabolic view. Curr Opin Crit Care 12(4), 315-321. 117.-Li J, Zhu X, Yang S, Xu H, Guo M, Yao Y, Huang Z, Lin D. (2019) Lidocaine attenuates cognitive impairment after isoflurane anesthesia by reducing mitochondrial damage. Neurochem Res 44(7), 1703-1714. 118.-Li SH, Li XJ. (2004) Huntingtin–protein interactions and the pathogenesis of Huntington’s disease. Trends Genet 20(3), 146-154. 119.-Li YC, Wang R, Xu MM, Jing XR, Aa J, Sun RB, Na SJ, Liu T, Ding XS, Sun CY, Ge WH. (2018) Aneurysmal subarachnoid hemorrhage onset alters pyruvate metabolism in poor-grade patients and clinical outcome depends on more: a cerebrospinal fluid metabolomic study. ACS Chem Neurosci 10(3), 1660-1667. 120.-Liguori C, Stefani A, Sancesario G. (2015). CSF lactate levels, [TAU] proteins, cognitive decline: a dynamic relationship in Alzheimer`s disease. J Neurol Neurosurg Psychiatry 86(6), 655-666. 121.-Loaiza A, Porras OH, Barros LF. (2003) Glutamate triggers rapid glucose transport stimulation in astrocytes as evidenced by real-time confocal microscopy. J Neurosci 23(19), 7337-7342. 122.-Löbert V, Mischke R, Tipold A. (2003) Laktat-und pyruvat-bestimmung in plasma und liquor cerebrospinalis beim hund. Kleinterpraxis 48, 735-743. 123.-López I, Aguilera-Tejero E, Estepa JC, Bas S, Mayer-Valor R, Jiménez A, Rodríguez M. (2005) Diurnal variations in the plasma concentration of parathyroid hormone in dogs. Vet Rec 157(12), 344-347. 124.-Loy DM, Sroufe AE, Pelt JL, Burke DA, Cao QL, Talbott JF, Whittemore SR. (2005) Serum biomarkers for experimental acute spinal cord injury: rapid elevation of neuron specific enolase and S-100β. Neurosurgery 56(2), 391-397. 125.-Lu J. (2019) The Warburg metabolism fuels tumor metastasis. Cancer Metastasis Rev 38(1-2), 157-164. 126.-Lubieniecka J, Streijger F, Lee JHT, Stoynov N, Liu J, Mottus R, Pfeifer T, Kwon BK, Coorssen JR, Foster LJ, Grigliatti TA, Tetzlaff W. (2011) Biomarkers for severity of spinal cord injury in the cerebrospinal fluid of rats. PloS One 6(4). 127.-Lundblad M, Picconi B, Lindgren H, Cenci MA. (2004) A model of L-DOPA-induced dyskinesia in 6-hydroxydopamine lesioned mice: relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis 16(1), 110-123. 128.-Lying-Tunell U, Lindblad BS, Malmlund HO, Persson B. (1981) Cerebral blood flow and metabolic rate of oxygen, glucose, lactate, pyruvate, ketone bodies and amino acids. Acta Neurol Scand 63, 337-350. 129.-Ma J, Novikov LN, Karlsson K, Kellerth JO, Wiberg M. (2001) Plexus avulsion and spinal cord injury increase the serum concentration of S-100 protein: an experimental study in rats. Scand J Plast Reconstr Surg Hand Surg 35(4), 355-359. 130.-Mackay BM, Curtis N. (1999) Adipsia and hypernatraemia in a dog with focal hypothalamic granulomatous meningoencephalitis. Aust Vet J 77(1), 14-17. 131.-Magi S, Piccirillo S, Amoroso S, Lariccia V. (2019) Excitatory amino acid transporters (EAATs): glutamate transport and beyond. Int J Mol Sci 20(22), pii: E5674. 132.-Magistretti PJ, Pellerin L (1997) Metabolic coupling during activation: a cellular view. Adv Exp Med Biol 413, 161–166. 133.-Mallard JM, Rieser TM, Peterson NW. (2018) Propofol infusion-like syndrome in a dog. Can Vet J 59(11), 1216-1222. 134.-Manteca X. (2011) Nutrition and behaviour in senior dogs. Top Companion Anim Med 26, 33-36. 135.-Mariani CL, Nye CJ, Tokarz DA, Green L, Lau J, Zidan N, Early PJ, Guevar J, Muñana KR, Olby NJ, Miles S. (2019) Cerebrospinal fluid lactate in dogs with inflammatory central nervous system disorders. J Vet Intern Med 33(6), 2701-2708. 136.-Marquardt G, Setzer M, Seifert V. (2004) Protein S-100b as serum marker for prediction of functional outcome in metastatic spinal cord compression. Acta Neurochir (Wien) 146(5), 449-452. 137.-Marquardt G, Setzer M, Seifert V. (2004) Protein S-100b for individual prediction of functional outcome in spinal epidural empyema. Spine (Phila Pa 1976) 29(1), 59-62. 138.-Martin SB, Cenini G, Barone E, Dowling ALS, Mancuso C, Butterfield A, Murphy MP, Head E. (2011) Neurosci Lett 51(2), 92-95. 139.-Mattson Porth C, Matfin G. (2008) Pathophysiology. Concepts of altered health states. 8th ed. China, Wolters Kluwer Health/Lippincott Williams & Wilkins. 140.-McCommis KS, Finck BN. (2015) Mitochondrial pyruvate transport: a historical perspective and future research directions. Biochem J 466(3), 443-454. 141.-McEwen BS, Bowles NP, Gray JD, Hill MN, Hunter RG, Karatsoreos IN, Nasca C. (2015) Mechanisms of stress in the brain. Nat Neurosci 18(10), 1353-1363. 142.-McLeish MJ, Kenyon GL. (2005) Relating structure to mechanism in creatine kinase. Crit Rev Biochem Mol Biol 40(1), 1-20. 143.-Milgram NW, Head E, Zicker SC, Ikeda-Douglas CJ, Murphey H, Muggenburg B, Siwak C, Tapp D, Cotman CW. (2005) Learning ability in aged beagle dogs is preserved by behavioural enrichment and dietary fortification: a two-year longitudinal study. Neurobiol Aging 26(1), 77-90. 144.-Miller RD. (2015) Miller`s Anesthesia. 8th ed. Philadelphia, Elsevier.Saunders. 145.-Miyazaki M, Hashimoto T, Yoneda Y, Saijio T, Mori K, Ito M, Kuroda Y. (1998). Adrenocorticotropic hormone therapy for infantile spasms alters pyruvate metabolism in the central nervous system. Brain Dev 20(5), 312-318. 146.-Muravchick S, Levy RJ. (2006) Clinical implications of mitochondrial dysfunction. Anesthesiology 105(4), 819-837. 147.-Mutoh T, Nishimura R, Sasaki N. (2001) Effects of nitrous oxide on mask induction of anesthesia with sevoflurane or isoflurane in dogs. Am J Vet Res 62(11), 1727-1733. 148.-Nadeson R, Goodchild CS. (1997) Antinociceptive properties of propofol: involvement of spinal cord gamma-aminobutyric acid(A) receptors. J Pharmacol Exp Ther 282, 1181–1186. 149.-Nattie EE, Edwards WH. (1981) CSF acid-base regulation and ventilation during acute hypercapnia in the newborn dog. J Appl Physiol Respir Environ Exerc Physiol 50(3), 566-574. 150.-Nazir M, Wani WA, Malik, MA, Mir MR, Ashraf Y, Kawoosa K, Ali SW. (2017) Cerebrospinal fluid lactate: a differential biomarker for bacterial and viral meningitis in children. J Pediatr 94(1), 88-92. 151.-Nicholatos JW, Robinette TM, Tata SVP, Yordy JD, Francisco AB, Platov M, Yeh TK, Ilkayeva OR, Huynh FK, Dokukin M, Volkov D, Weinstein MA, Boyko AR, Miller RA, Sokolov I, Hirschey MD, Libert S. (2019) Cellular energetics and mitochondrial uncoupling in canine aging. Geroscience 41(2), 229-242. 152.-Norwood JN, Zhang Q, Card D, Craine A, Ryan TM, DrewPJ. (2019) Anatomical basis and physiological role of cerebrospinal fluid transport through the murine cribriform plate. Elife 8. 153.-Nye CJ, Mariani CL. (2018) Validation of a portable monitor for assessment of cerebrospinal fluid lactate in dogs. Vet Clin Pathol 47(1), 108-114. 154.-Olby NJ, Sharp NJH, Muñana KR, Papich MG. (1999) Chronic and acute compressive spinal cord lesions in dogs due to intervertebral disc herniation are associated with elevation in lumbar cerebrospinal fluid glutamate concentration. J Neurotrauma 16(12), 1215-1224. 155.-Olmarker K, Rydevik B, Holm S, Bagge U. (1989) Effects of experimental graded compression on blood flow in spinal nerve roots. a vital microscopic study on the porcine cauda equina. J Orthop Res 7(6), 817-823. 156.-Packer L, Witt EH, Tritschler HJ. (1995) alpha-Lipoic acid as a biological antioxidant. Free Radic Biol Med 19(2), 227-250. 157.-Pajares S, Arias A, García-Villoria J, Briones P, Ribes A. (2013) Role of creatine as biomarker of mitochondrial diseases. Mol Genet Metab 108(2), 119-124. 158.-Pan Y, Larson B, Araujo JA, Lau W, de Rivera C, Santana R, Gore A, Milgram NW. (2010) Dietary supplementation with medium-chain TAG has long-lasting cognition-enhancing effects in aged dogs. Br J Nut 12, 1746-1754. 159.-Pang DS, Boysen S. (2007) Lactate in veterinary critical care: pathophysiology and management. J Am Anim Hosp Assoc 43(5), 270-279. 160.-Papa L, Ramia MM, Edwards D, Johnson BD, Slobounov SM. (2015) Systematic review of clinical studies examining biomarkers of brain injury in athletes after sports-related concussion. J Neurotrauma 32(10), 661-673. 161.-Parnetti L, Gaiti A, Polidori MC, Brunetti M, Palumbo B, Chionne F, Cadini D, Cecchetti R, Senin U. (1995) Increased cerebrospinal fluid pyruvate levels in Alzheimer’s disease. Neurosci Lett 199(3), 231-233. 162.-Parnetti L, Reboldi G, Gallai V. (2000) Cerebrospinal fluid pyruvate levels in Alzheimer´s disease and vascular dementia. Neurology 54, 735-737. 163.-Patra KC, Hay N. (2014) The pentose phosphate pathway and cancer. Trends Biochem Sci 39(8), 347-354. 164.-Pekala J, Patkowska-Sokola B, Bodkowski R, Jamroz D, Nowakowski P, Lochynski S, Librowski T. (2011) L-Carnitine - metabolic functions and meaning in humans life. Curr Drug Metab 12(7), 667-678. 165.-Peng K, Liu HY, Wu SR, Liu H, Zhang ZC, Ji FH. (2016) Does propofol anesthesia lead to less postoperative pain compared with inhalational anesthesia? A systematic review and metaanalysis. Anesth Analg 123, 846–858. 166.-Pham NT, Matsuki N, Shibuya M, Tamahara S, Ono K. (2008) Impaired expression of excitatory amino acid transporte 2 (EAAT2) and glutamate homeostasis in canine necrotizing meningoencephalitis. J Vet Med Sci 70(10), 1071-1075. 167.-Platt S, Garossi L. (2012) Small animal neurological emergencies. 1st ed. United Kingdom, Manson Publishing Ltd. 168.-Platt SR, Olby NJ. (2004) BSAVA Manual of canine and feline neurology. 3rd ed. Gloucester, British Small Animal Veterinary Association. 169.-Plumb DC. (2011) Plumb`s Veterinary Drug Handbook. 7th ed. United Kingdom, Willey-Blackwell. 170.-Pocernich CB, LaFontaine M, Butterfield DA. (2000) In-vivo glutathione elevation protects against hydroxyl free radical-induced protein oxidation in rat brain. Neurochem Int 36(3), 185-191. 171.-Podell M, Hadjiconstantinou M. (1997) Cerebrospinal fluid gamma-aminobutyric acid and glutamate values in dogs with epilepsy. Am J Vet Res 58(5), 451-456. 172.-Porras OH, Loaiza A, and Barros LF. (2004). Glutamate mediates acute glucose transport inhibition in hippocampal neurons. J Neurosci 24, 9669–9673. 173.-Pouw MH, Hosman AJF, VanMiddendorp JJ, Verbeek MM, Vos PE, VandeMeent H. (2009) Biomarkers in spinal cord injury. Spinal Cord 47(7), 519-525. 174.-Pugliese M, Carrasco JL, Andrade C, Mas E, Mascort J, Mahy N. (2005) Severe cognitive impairment correlates with higher cerebrospinal fluid levels of lactate and pyruvate in a canine model of senile dementia. Prog Neuropsychopharmacol Biol Psychiatry 29(4), 603-610. 175.-Quistorff B, Grunnet N. The isoenzyme pattern of LDH does not play a physiological role; except perhaps during fast transitions in energy metabolism. Aging (Albany NY) 3(5), 457-460. 176.-Regenold WT, Phatak P, Makley MJ, Stone RD, Kling MA. (2008) Cerebrospinal fluid evidence of increased extra-mitochondrial glucose metabolism implicates mitochondrial dysfunction in multiple sclerosis disease progression. J Neurol Sci 275(1-2), 106-112. 177.-Reiner A, Levitz J. (2018) Glutamatergic signaling in the central nervous system: ionotropic and metabotropic receptors in concert. Neuron 98(6), 1080-1098. 178.-Ribeiro FM, Vieira LB, Pires RGW, Olmo RP, Ferguson SSG. (2017) Metabotropic glutamate receptors and neurodegenerative diseases. Pharmacol Res 115, 179-191. 179.-Richard C, Calder PC. (2016) Docosahexaenoic acid. Adv Nutr 7(6), 1139-1141. 180.-Rojas DN, Kuner R, Agarwal N. (2019) Metabolomic signature of type 1 diabetes-induced sensory loss and nerve damage in diabetic neuropathy. J Mol Med (Berl) 97(6), 845-854. 181.-Roriz-Filho J, Sá-Roriz TM, Rosset I, Camozzato AL, Santos AC, Chaves ML, Moriguti JC, Roriz-Cruz M (2009) (Pre)diabetes, brain aging, and cognition. Biochim Biophys Acta 1792, 432-443. 182.-Rosenberg H, Sambuughin N, Riazi S, Dirksen R. (2003) Malignant hyperthermia susceptibility. GeneReviews 19, 1-26. 183.-Rosol TJ, Capen CC. (1996) Pathophysiology of calcium, phosphorus, and magnesium metabolism in animals. Vet Clin North Am Small Anim Pract 26(5), 1155-1184. 184.-Sagar SM, Sharp FR, Swanson RA. (1987) The regional distribution of glycogen in rat brain fixed by microwave irradiation. Brain Res 417, 172–174. 185.-Sahinovic MM, Struys MMRF, Absalom AR. (2018) Clinical pharmacokinetics and pharmacodynamics of propofol. Clin Pharmacokinet 57(12), 1539-1558. 186.-Sams L, Braun C, Allman D, Hofmeister E. (2008) A comparison of the effects of propofol and etomidate on the induction of anesthesia and on cardiopulmonary parameters in dogs. Vet Anaesth Analg 35(6), 488-494. 187.-Sarmiento A, Diaz-Castro J, Pulido-Moran M, Kajarabille N, Guisado R, Ochoa JJ. (2016) Coenzyme Q10 Supplementation and Exercise in Healthy Humans: A Systematic Review. Curr Drug Metab 17(4), 345-358. 188.-Schurr A, Miller JJ, Payne RS, Rigor BM. (1999) An increase in lactate output by brain tissue serves to meet the energy needs of glutamate-activated neurons. J Neurosci 19(1), 34-39. 189.-Secer HI, Izci Y. (2008) The CSF creatine kinase-BB isoenzyme activity in experimental lumbar spinal stenosis model. J Spinal Disord Tech 21(2), 148-152. 190.-Silverstein DC, Hopper K. (2015) Small Animal Critical Care Medicine. 2nd ed. Elseviers Saunders, St. Louis, Missouri. 191.-Simon MJ, Lliff JJ. (2016) Regulation of cerebrospinal fluid (CSF) flow in neurodegenerative, neurovascular and neuroinflammatory disease. Biochim Biophys Acta 1862(3), 442-451. 192.-Simone IL, Federico F, Trojano M. (1996) High resolution proton MR spectroscopy of cerebrospinal fluid inMS patients. Comparison with biochemical changes in demyelinating plaques. J Neurol Sci 144, 182-190. 193.-Skerritt G. (2018) King´s Applied anatomy of the central nervous system of domestic mammals. 2nd ed. Pondicherry, India, Wiley-Blackwell. 194.-Smith D, Pernet A, Hallett WA, Bingham E, Marsden PK, Amiel SA. (2003) Lactate: a preferred fuel for human brain metabolism in vivo. J Cereb Blood Flow Metab 23(6), 658-664. 195.-Söbbeler FJ, Carrera I, Pasloske K, Ranasinghe MG, Kircher P, Kästner SBR. (2018) Effects of isoflurane, sevoflurane, propofol and alfaxalone on brain metabolism in dogs assessed by proton magnetic resonance spectroscopy (H MRS). BMC Vet Res 14(1), 69. 196.-Söder J, Höglund K, Dicksved J, Hagman R, Röhnisch HE, Moazzami AA, Wernersson S. (2019) Plasma metabolomics reveals lower carnitine concentrations in overweight Labrador Retriever dogs. Acta Vet Scand 61(1), 10. 197.-Sokolowski W, Czubaj N, Skibniewski M, Barszcz K, Kupczynska M, Kinda W, Kielbowicz Z. (2018) Rostral cranial fossa as a site for cerebrospinal fluid drainage – volumetric studies in dog breeds of different size and morphotype. BMC Vet Res 14(1), 162. 198.-Sonnay S, Duarte JMN, Just N, Gruetter R. (2017) Energy metabolism in the rat cortex under thiopental anaesthesia measured. In vivo by C MRS. J Neurosci Res 95(11), 2297-2306. 199.-Straus SE, Thorpe KE, Holroyd-Ledue J. (2006) How do I perform a lumbar puncture and analyze the results to diagnose bacterial meningitis?. JAMA 296(16), 2012-2022. 200.-Sugi T, Fujishima M, Omae T. (1975) Lactate and pyruvate concentrations, and acid-base balance of cerebrospinal fluid in experimentally induced intracerebral and subarachnoid hemorrhage in dogs. Stroke 6(6), 715-719. 201.-Sullivan LA, Campbell VL, Klopp S, Rao S. (2009) Blood lactate concentrations in anesthetized dogs with intracranial disease. J Vet Intern Med 23, 488-492. 202.-Sullivan SA, Harmon BG, Purinton T, Greene CE, Glerum LE. (2003) Lobar holoprosencephaly in a Miniature Schnauzer with hypodipsic hypernatremia. J Am Vet Med Assoc 223(12), 1783-1787. 203.-Tarnaris A, Toma AK, Chapman MD, Petzold A, Keir G, Kitchen ND, Watkins LD (2011) Rostrocaudal dynamics of CSF biomarkers. Neurochem Res 36, 528-532. 204.-Tipold A. (2003) Cerebrospinal fluid. In: Clinical neurology in small animals – Localization, diagnosis and treatment. Ithaca, New York, USA. 205.-Travassos PB, Godoy G, deSouza HM, Curi R, Bazotte RB. (2018) Performance during a strenuous swimming session is associated with high blood lactate: pyruvate ratio and hypoglycemia in fasted rats. Braz J Med Biol Res 51(5). 206.-Vaagenes P, Safar P, Diven W, Moossy J, Rao G, Cantadore R, Kelsey S. (1988) Brain enzyme levels in CSF after cardiac arrest and resuscitation in dogs: markers of damage and predictors of outcome. J Cereb Blood Flow Metab 8(2), 262-275. 207.-Vámosi B, Diószeghy P, Molnár L. (1982) Lactate and pyruvate content of the human cisternal cerebrospinal fluid- Arch Psychiatr Nervenkr 232, 521-532. 208.-VanDongen EP, TerBeek HB, Schepns MA, Morshuis WJ, Haas FJ, DeBoer A, Boezeman EH, Aarts LP. (1999) The relationship between evoked potentials and measurements of S-100 protein in cerebrospinal fluid during and after thoracoabdominal aortic aneurism surgery. J Vasc Surg 30(2), 293-300. 209.-Vaughn DM, Coleman E, Simpson ST, Whitmer B, Satjawatcharaphong C. (1988) A rostrocaudal gradient for neurotransmitter metabolites and a caudorostral gradient for protein in canine cerebrospinal fluid. Am J Vet Res 49(12), 2134-2137. 210.-Venkatesh B, Morgan TJ, Boots RJ, Hall J, Siebert D. (2003) Interpreting CSF lactic acidosis: effects of erythrocytes and air exposure. Crit Care Resusc 5(3), 177-181. 211.-Villiers E, Blackwood L. (2009) Manual de diagnóstico de laboratorio en pequeños animales. 2nd ed. Barcelona, España, Edicioness. 212.-Vincent JL, Quintairos e Silva A, Couto Jr L, Taccone FS. (2016) The value of blood lactate kinetics in critically ill patients: a systematic review. Crit Care 20(1), 257. 213.-Walker MC, Van der Donk WA. (2016) The many roles of glutamate in metabolism. J Ind Microbiol Biotechnol 43(0), 419-430. 214.-Walliman T, Hemmer W. (1994) Creatine kinase in non-muscle tissues and cells. Mol Cell Biochem 133/134, 193-220. 215.-Wang Q, Michiue T, Ishikawa T, Zhu BL, Maeda H. (2011) Combined analyses of creatine kinase MB, cardiac troponin I and myoglobin in pericardial and cerebrospinal fluids to investigate myocardial and skeletal muscle injury in medicolegal autopsy cases. Leg Med (Tokyo) 13, 226-232. 216.-Wei H, Kang B, Wei W, Liang G, Meng QC, Li Y, Eckenhoff RG. (2005) Isoflurane and sevoflurane affect cell survival and BCL-2/BAX ratio differently. Brain Res 1037(1-2), 139-147. 217.-Weiser MJ, Butt CM, Mohajeri MH. (2016) Docosahexaenoic acid and cognition throughout the lifespan. Nutrients 8(2), 99-139. 218.-Winnerkvist A, Anderson RE, Hansson LO, Rosengren L, Estrera AE, Huynh TTT, Porat EE, Safi HJ. (2007) Multilevel somatosensory evoked potentials and cerebrospinal proteins: indicators of spinal cord injury in thoracoabdominal aortic aneurysm surgery. Eur J Cardiothorac Surg 31(4), 637-642. 219.-Witsberger TH, Levine JM, Fosgate GT, Slater MR, Kerwin SC, Russell KE, Levine GJ. (2012) Associations between cerebrospinal fluid biomarkers and long-term neurologic outcome in dogs with acute intervertebral disk herniation. J Am Vet Med Assoc 240(5), 555-562. 220.-Yin W, Tibbs R, Aoki K, Badr A, Zhang J. (2001) Metabolic alterations in cerebrospinal fluid from double hemorrhage model of dogs. Neurol Res 23(1), 87-92. 221.-Zanella A, Fermo E, Bianchi P, Chiarelli LR, Valentini G. (2007) Pyruvate kinase deficiency: The genotypephenotype association. Blood Rev 21(4), 217-231. 222.-Zhang WM, Natowicz MR. (2013) Cerebrospinal fluid lactate and pyruvate concentrations and their ratio. Clin Biochem 46(7-8), 694-697. 223.-Zhang Y, Dong Y, Wu X, Lu Y, Xu Z, Knapp A, Yue Y, Xu T, Xie Z. (2010) The mitochondrial pathway of anesthetic isoflurane-induced apoptosis. J Biol Chem 285(6), 4025-4037.