Fluid migration recorded by fluid inclusions in crack-sealed quartz veins and sandstone host rock; Cameros Basin, Spain

  1. Laura González Acebrón 1
  2. Maialen Lopez Elorza 1
  3. Ramón Mas 1
  4. José Arribas 1
  5. Silvia Omodeo Salé 2
  1. 1 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

  2. 2 Université de Genève
    info

    Université de Genève

    Ginebra, Suiza

    ROR https://ror.org/01swzsf04

Revista:
Journal of iberian geology: an international publication of earth sciences

ISSN: 1886-7995 1698-6180

Año de publicación: 2021

Volumen: 47

Número: 4

Páginas: 641-662

Tipo: Artículo

DOI: 10.1007/S41513-021-00174-Z DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Journal of iberian geology: an international publication of earth sciences

Resumen

Este estudio aborda el papel de la circulación hidrotermal a través de las fracturas y su impacto en las areniscas encajantes en una cuenca sedimentaria extensional (Cuenca de Cameros, España) afectada por un metamorfsmo hidrotermal postextensional. Las cuarzoarenitas del Grupo Urbión constituyeron un camino de migración de hidrocarburos que fue afectado por un metamorfsmo hidrotermal de grado muy bajo a bajo durante el Albiense tardío-Coniaciense. Este proceso generó abundantes venas de cuarzo y transformó las cuarzoarenitas en cuarcitas. Este estudio compara la microtermometría de las asociaciones de inclusiones fuidas (FIAs según sus siglas en inglés) en las venas y en los cementos de los granos de cuarzo de las cuarcitas, para comprender el comportamiento de los fuidos hidrotermales a lo largo de las fracturas y su efecto en la roca caja. Las inclusiones fuidas en los cementos de los granos de cuarzo contienen líquido y vapor a temperatura de habitación y homogenizan a fase líquida (Th: 124–265 °C, sistema H2O+NaCl). Las de las venas de cuarzo presentan tanto CO2 líquido como vapor, y una fase líquida acuosa a temperatura de habitación. Su homogenización fnal es a fase líquida (Th: 109–282 °C, H2O+NaCl+CO2, valores medios de cantidad de sustancia: 0.92, 0.01, 0.07). Existe una amplia variación de Th dentro de cada FIA, debido a los procesos de apertura y cierre de fracturas y a la reequilibración por los sucesivos pulsos hidrotermales. Sin embargo, el estrecho rango de variación de Th dentro de cada FIA hacia techo del registro indica que estas inclusiones probablemente no están reequilibradas. Se pueden reconocer dos estadios de crecimiento en los cementos de los granos de cuarzo mediante SEM-CL, uno diagenético y otro hidrotermal, este último con FIAs con Th similares a las de las venas. Estos resultados pueden ser útiles en la evaluación de recursos de geo-energía en cuencas sedimentarias.

Referencias bibliográficas

  • Alonso-Azcárate, J., Barrenechea, J. F., Rodas, M., & Mas, R. (1995). Comparative study of the transition between very low-grade metamorphism and low-grade metamorphism in siliciclastic and carbonate sediments. Early Cretaceous, Cameros Basin (North Spain). Clay Minerals, 30, 407–419.
  • Alonso-Azcárate, J., Rodas, M., Bottrell, S. H., Raiswell, R., Velasco, F., & Mas, R. (1999a). Pathways and distances of fuid fow during low-grade metamorphism: Evidence from pyrite deposits of the Cameros Basin, Spain. Journal of Metamorphic Geology, 17, 339–348.
  • Alonso-Azcárate, J., Boyce, A. J., Bottreu, S. H., MacAulay, C., Rodas, M., Fallick, A. E., et al. (1999b). Development and use of in situ laser sulfur isotope analyses for pyrite-anhydrite geothermometry: An example from the pyrite deposits of the Cameros basin, NE Spain. Geochimica et Cosmochimica Acta, 63, 509–513.
  • Arribas, J., González-Acebrón, L., Omodeo-Salé, S., & Mas, R. (2014). The infuence of the provenance of arenite on its diagenesis in the Cameros Rift Basin (Spain). In R. A. Scott, H.R. Smyth, A.C. Morton & N. Richardson (Eds.), Sediment Provenance Studies in Hydrocarbon Exploration and Production (vol 386, pp. 63–73). UK: Geological Society, Special Publications
  • Bakker, R. J. (1999). Adaption of Bowers and Helgeson (1983) equation of state to isochore and fugacity coefcient calculation in the H2O–CO2–CH4–N2–NaCl fuid system. Chemical Geology, 154, 225–236.
  • Bakker, R. J. (2003). Package FLUIDS 1. Computer programs for analysis of fuid inclusion data and for modelling bulk fuid properties. Chemical Geology, 194, 3–23.
  • Barrenechea, F. J., Rodas, M., & Mas, J. R. (1995). Clay mineral variation associated to diagenesis and low-grade metamorphism of early Cretaceous sediments in the Cameros Basin, Spain. Clay Minerals, 30, 89–103.
  • Barrenechea, F. J., Rodas, M., Frey, M., Alonso-Azcárate, J., & Mas, J. R. (2000). Chlorite, corrensite and chlorite-mica in Late Jurassic fuvio-Lacustrine sediments of the Cameros Basin of Northeastern Spain. Clays and Clay Minerals, 48(2), 256–265.
  • Barrenechea, F. J., Rodas, M., Frey, M., Alonso-Azcárate, J., & Mas, J. R. (2001). Clay diagenesis and low-grade metamorphism of Tithonian and Berriasian sediments in the Cameros Basin. Clay Minerals, 36(3), 325–333.
  • Becker, S. P., Eichhubl, P., Laubach, S. E., Reed, R. M., Lander, R. H., & Bodnar, R. J. (2010). A 48 m.y. history of fracture opening, temperature, and fuid pressure: Cretaceous Travis Peak Formation, East Texas basin. GSA Bulletin, 122(7–8), 1081–1093.
  • Blackwell, D. D. (1971). The thermal structure of the continental crust. In J. G. Heacock (Ed.), The structure and physical properties of the earth’s crust geophysical monograph 14 (pp. 169–184). American Geophysical Union.
  • Bodnar, R. J. (1993). Revised equation and table for determining the freezing point depression of H2O–NaCl solutions. Geochimica et Cosmochimica Acta, 57, 683–684.
  • Bowers, T. S., & Helgeson, H. C. (1983). Calculation of the thermodynamic and geochemical consequences of nonideal mixing in the system H2O–CO2–NaCl on phase relations in geological systems: Equation of state for H2O–CO2–NaCl fuids at high pressures and temperatures. Geochimica Et Cosmochimica Acta, 47, 1247–1275.
  • Casas-Saínz, A. M., & Gil-Imaz, A. (1998). Extensional subsidence, contractional folding and thrust inversion of the Eastern Cameros Basin, Northern Spain. Geologische Rundschau, 86, 802–818.
  • Casas-Saínz, A. M., Villalaín, J. J., Soto, R., Gil-Imaz, A., Del Río, P., & Fernández, G. (2009). Multidisciplinary approach to an extensional syncline model for the Mesozoic Cameros Basin (N Spain). Tectonophysics, 470, 3–20.
  • Casas-Sainz, A. M., Del Rio, P., Mata, P., Villalain, J. J., & Barbero, L. (2012). Comment on Gonzalez-Acebron et al. Criteria for the recognition of localization and timing of multiple events of hydrothermal alteration in sandstones illustrated by petrographic, fuid inclusion, and isotopic analysis of the Tera Group, Northern Spain. Int. J. Earth Sciences (2011) 100, 1811–1826.
  • Casquet, C., Galindo, C., González-Casado, J. M., Alonso, A., Mas, R., Rodas, M., et al. (1992). El metamorfsmo en la Cuenca de Los Cameros. Geocronología e Implicaciones Tectónicas. Geogaceta, 11, 22–25.
  • Castañares, L., Robles, S., Gimeno, D., & Bravo, J. V. (2001). The submarine volcanic system of the Errigoiti formation (Albian– Santonian of the Basque-Cantabrian Basin, Northern Spain): Stratigraphic framework, facies, and sequences. Journal of Sedimentary Research, 71(2), 318–333.
  • Cesare, B. (1995). Graphite precipitation in C–O–H fuid inclusions: Closed system compositional and density changes, and thermobarometric implications. Contributions to Mineralogy and Petrology, 122(1), 25–33.
  • Davis, D. W., Lonoenstein, T. K., & Spencer, R. J. (1990). Melting behavior of fuid inclusions on laboratory-grown halite crystals in the systems NaCl–H2O, NaCl–KCl–H2O, NaCl–MgCl2- H2O, NaCl–KCl–H2O. Geochimica et Cosmochimica Acta, 54, 591–601.
  • Diamond, L. W. (1994). Salinity of multivolatile fuid inclusions determined from clathrate hydrate stability. Geochimica Et Cosmochimica Acta, 58, 19–41.
  • Diamond, L.W. (2003). Introduction to gas–bearing aqueous fuid inclusions. In I. M. Samson, A. J. Anderson & D. D. Marshall (Eds.), Fluid inclusions: analysis and interpretation (vol 32, pp. 101–158). Mineralogical Association of Canada, Short course series
  • Duncan, A., Hanks, C., Wallace, W. K., O’Sullivan, P. B., & Parris, T. M. (2012). An integrated model of the structural evolution of the central Brooks Range foothills, Alaska, using structural geometry, fracture distribution, geochronology, and microthermometry. AAPG Bulletin, 96(12), 2245–2274.
  • Fall, A., & Bodnar, R. J. (2018). How precisely can the temperature of a fuid event be constrained using fuid inclusions? Economic Geology, 113, 1817–1843.
  • Fall, A., Eichhubl, P., Cumella, S. P., Bodnar, R. J., Laubach, S. E., & Becker, S. P. (2012). Testing the basin-centered gas accumulation model using fuid inclusion observations: Southern Piceance Basin Colorado. AAPG Bulletin, 96(12), 2297–2318.
  • Frezzotti, M. L., Di Vincenzo, G., Ghezzo, C., & Burke, E. A. (1994). Evidence of magmatic CO2-rich fuids in peraluminous graphite-bearing leucogranites from Deep Freeze Range (northern Victoria Land, Antarctica). Contributions to Mineralogy and Petrology, 117(2), 111–123.
  • García-Lasanta, C., Oliva-Urcia, B., Román-Berdiel, T., Casas, A. M., & Hirt, A. M. (2014). Understanding the Mesozoic kinematic evolution in the Cameros basin (Iberian Range, NE Spain) from magnetic subfabrics and mesostructures. Journal of Structural Geology, 66, 84–101.
  • Golberg, J. M., & Leyreloup, A. F. (1990). High temperature-low pressure Cretaceous metamorphism related to crustal thinning (Eastern North Pyrenean Zone, France). Contributions to Mineralogy and Petrology, 104(2), 194–207.
  • Goldstein, R. H., & Reynolds, T. J. (1994). Systematics of fuid inclusions in diagenetic minerals. SEMP Short Course 31. Tulsa, Oklahoma, USA, pp. 192.
  • González-Acebrón, L., Goldstein, R. H., Mas, R., & Arribas, J. (2011). Criteria for recognition of localization and timing of multiple events of hydrothermal alteration in sandstones illustrated by petrographic, fuid inclusion, and isotopic analysis of the Tera Group, Northern Spain. International Journal of Earth Sciences, 100, 1811–1826.
  • González-Acebrón, L., Goldstein, R. H., Mas, R., & Arribas, J. (2012). Answer to the comment of Casas et al. about González Acebrón et al.’s (2011) paper. International Journal of Earth Sciences, 101, 2049–2053.
  • Guimerà, J., Alonso, A., & Mas, J. R. (1995). Inversion of an extensional-ramp basin by a newly formed thrust: the Cameros Basin (N Spain). In J. G Buchanan and P.G. Buchanan (Eds.), Basin Inversion (vol 88, pp. 433–45). Geological Society, Special Publications
  • Guiraud, M., & Seguret, M. (1985). A realising solitary overstep model for the late Jurassic-Early Cretaceous (Wealdian) Soria strike-slip basin (Northern Spain). In K. T. Biddle & N. Christie-Blick (Eds.) Strike-Slip Deformation, Basin Formation, and Sedimentation (vol 37, pp. 159–175). Society of Economic Paleontologists and Mineralogists, Special Publications.
  • Hitchon, B. (1984). Geothermal gradients, hydrodinamics and hydrocarbon occurrences, Alberta Canada. AAPG Bulletin, 68(6), 713–743.
  • Hooker, J. N., Gomez, L. A., Laubach, S. E., Gale, J. F. W., & Marrett, R. (2012). Efects of diagenesis (cement precipitation) during fracture opening on fracture aperture-size scaling in carbonate rocks. In J. Garland, J. E. Neilson, S. E. Laubach, & K. J. Whidden (Eds.), Advances in carbonate exploration and reservoir analysis (Vol. 370, pp. 187–206). Geological Society Special Publications.
  • Huizenga, J. M. (2011). Thermodynamic modelling of a cooling C-O–H fuid–graphite system: Implications for hydrothermal graphite precipitation. Mineralium Deposita, 46(1), 23–33.
  • Hurai, V., & Horn, E. E. (1992). A boundary layer-induced immiscibility in naturally re-equilibrated H2O–CO2-NaCl inclusions from metamorphic quartz (Western Carpathians, Czechoslovakia). Contributions to Mineralogy and Petrology, 112(2), 414–427.
  • Lagabrielle, Y., Labaume, P., & de Saint Blanquat, M. (2010). Mantle exhumation, crustal denudation, and gravity tectonics during Cretaceous rifting in the Pyrenean realm (SW Europe): Insights from the geological setting of the lherzolite bodies. Tectonics, 29, TC4012.
  • Laubach, S. E., Reed, R. M., Olson, J. E., Lander, R. H., & Bonnell, L. M. (2004). Coevolution of crack-seal texture and fracture porosity in sedimentary rocks: Cathodoluminescence observations of regional fractures. Journal of Structural Geology, 26, 967–982.
  • Mantilla-Figueroa, L. C. (1999). El metamorfsmo hidrotermal de la sierra de Cameros (La Rioja-España): Petrología, geoquímica, geocronología y contexto estructural de los procesos de interacción fuido-roca (pp. 361). Universidad Complutense, Madrid: Ph.D. thesis, pp. 361.
  • Mantilla-Figueroa, L. C., Casquet, C., & Mas, J. R. (1998). Los paleofuidos del Grupo Oncala, Cuenca de Cameros (La Rioja, España): Datos de inclusiones fuidas, isótopos de oxígeno y SEM. Geogaceta, 24, 207–210.
  • Mantilla-Figueroa, L. C., Casquet, C., Galindo, C., & Mas, J. R. (2002). El metamorfsmo hidrotermal Cretácico y Paleógeno de la Cuenca de Cameros (Coordillera Ibérica, España). Zubía. Instituto De Estudios Riojanos, 14, 143–154.
  • Mas, R., Alonso, A., & Guimerà, J. (1993). Evolución tectonosedimentaria de una cuenca extensional intraplaca: La cuenca fnijurásicaeocretácica de Los Cameros (La Rioja- Soria). Revista De La Sociedad Geológica De España, 6(3–4), 129–144.
  • Mas, R., Benito, M. I., Arribas, J., Serrano, A., Guimerà, J., Alonso, A., et al. (2002). La Cuenca de Cameros: Desde la extensión fnijurásica-eocretácica a la inversión terciaria—implicaciones en la exploración de hidrocarburos. Zubía. Instituto De Estudios Riojanos, 14, 9–64.
  • Mas, R., Benito, M. I., Arribas, J., Serrano, A., Guimerà, J., & Alonso, A., et al. (2003). The Cameros Basin: From late Jurassic-early Cretaceous extension to tertiary contractional inversion-implications of hydrocarbon exploration. In AAPG International Conference and Exhibition. Geological Field Trip 11 (pp. 52), Barcelona, Spain.
  • Mas, R., García, A., Salas, R., Meléndez, A., Alonso, A., Aurell, M., et al. (2004). Segunda fase de rifting: Jurásico Superior-Cretácico Inferior. In J. Vera (Ed.), Geología de España (pp. 503–509). Sociedad Geológica de España–IGME.
  • Mas, R., Benito, M. I., Arribas, J., Alonso, A., Arribas, M. E., & González-Acebrón, L., et al. (2011). Evolution of an intra-plate rift basin: the Latest Jurassic-Early Cretaceous Cameros Basin (Northwest Iberian Ranges, North Spain). In Post-Meeting feld trips 28th IAS Meeting (pp. 117–154). Zaragoza, Spain
  • Mas, R., Benito, M. I., Arribas, J., Omodeo-Salé, S., Suarez-González, P., Quijada, I. E., et al. (2019). The cameros basin. In C. Quesada & J. T. Oliveira (Eds.), The geology of Iberia: A geodynamic approach: The alpine cycle (Vol. 5, pp. 37–46). Springer.
  • Mata, M. P., Casas, A. M., Canals, A., Gil, A., & Pocovi, A. (2001). Thermal history during Mesozoic extension and Tertiary uplift in the Cameros Basin, northern Spain. Basin Research, 13, 91–111.
  • Montigny, R., Azambre, B., Rossy, M., & Thuizat, R. (1986). K-Ar study of cretaceous magmatism and metamorphism in the Pyrenees: Age and length of rotation of the Iberian Peninsula. Tectonophysics, 129(1–4), 257–273.
  • Müller, W., Aerden, D., & Halliday, A. N. (2000). Isotopic dating of strain fringe increments: Duration and rates of deformation in shear zones. Science, 288, 2195–2198.
  • Ochoa, M. (2006). Procedencia y diagénesis del registro arenoso del Grupo Urbión (Cretácico Inferior) de la Cuenca de Cameros (Cordillera Ibérica septentrional). Universidad Complutense de Madrid: Ph.D. thesis, pp. 240.
  • Ochoa, M., Arribas, J., Mas, R., & Goldstein, R. H. (2007). Destruction of a fuvial reservoir by hydrothermal activity. Sedimentary Geology, 202, 158–173.
  • Omodeo-Salé, S. (2014). Thermal and sedimentary modeling of an intraplate extensional basin: Cameros Basin, North Spain. Application for a hydrocarbon prospecting (pp. 481).Universidad Complutense, Madrid: Ph.D. thesis, pp. 481.
  • Omodeo-Salé, S., Guimerà, J., Mas, R., & Arribas, J. (2014). Tectono-stratigraphic evolution of an inverted extensional basin: The Cameros Basin (north of Spain). International Journal of Earth Science, 103, 1597–1620.
  • Omodeo-Salé, S., Salas, R., Guimerà, J., Ondrak, R., Mas, R., Arribas, J., et al. (2017). Subsidence and thermal history of an inverted Late Jurassic-Early Cretaceous extensional basin (Cameros, North-Central Spain) afected by very low-to low-grade metamorphism. Basin Research, 9, 156–174.
  • Omodeo-Salé, S., Ondrak, R., Arribas, J., Mas, R., Guimerà, J., & Martínez, L. (2019). Petroleum systems modeling in a fold-and-thrust belt setting: The inverted Cameros Basin North-Central Spain. Journal of Petroleum Geology, 42(2), 145–172.
  • Ramsay, J. G. (1980). The crack-seal mechanism of rock-deformation. Nature, 284, 135–139.
  • Salas, R., Guimerá, J., Mas, R., Martín-Closas, C., Meléndez, A., & Alonso, A. (2001). Evolution of the mesozoic central iberian rift system and its cainozoic inversion (Iberian Chain). In W. Cavazza, A. H. F. R. Roberson, & P. Ziegler (Eds.), Peri-tethyan rift/wrench basins and passive margins (Vol. 186, pp. 145–185). Memoires Du Museum National D’Histoire Naturelle.
  • Salas, R., Caja, M. A., Mas, R., Martín-Martín, J. D., Mas, R., & Permanyer, A. (2005). Mid-Late Cretaceous volcanism, metamorphism and the regional thermal event afecting the Northeastern Iberian basins (Spain). In A. Arnaud-Vanneau. N. Arndt & I. Zghal (Eds.), Global Events during the Quiet Aptian-Turonian Superchro (pp. 55–58). Grenoble, France
  • San José, A. (2014). Characterization of Sytems of Interest in Geochemical Processes. Universidad Complutense, Madrid: Master thesis, pp. 46.
  • Steele-MacInnis, M. (2008). Fluid inclusions in the system H2O– NaCl–CO2: An algorithm to determine composition, density and isochore. Chemical Geology, 498, 31–44.
  • Suarez-Gonzalez, P., Benito, M. I., Mas, R., Quijada, I. E., & CamposSoto, S. (2016). Infuencia del Keuper y de la estructuración tardivarisca en la arquitectura de las unidades sin-extensionales del borde norte de la Cuenca de Cameros. Geotemas, 16, 185–188.
  • Tritlla, J., & Solé, J. (1999). A new dated Cretaceous hydrothermal event in the Iberian Ranges (E of Spain) and its signifcance within the Mesozoic thermic scenario in the Iberian Peninsula. Ore Geology Reviews, 15(4), 243–259.
  • Tugend, J., Manatschal, G., & Kusznir, N. J. (2014). Spatial and temporal evolution of hyperextended rift basins: Implications for the nature, kinematics, and timing of the Iberian-European plate boundary. Geology, 43(1), 15–18.
  • Villalaín, J. J., Fernández-González, G., Casas, A. M., & Gil-Imaz, A. (2003). Evidence of a cretaceous remagnetization in the Cameros Basin (North Spain): Implications for basin geometry. Tectonophysics, 377, 101–117.
  • Van den Kerkhof, A. M., & Hein, U. F. (2001). Fluid inclusion petrography. Lithos, 55, 27–47.
  • Walderhaug, O. (1994). Precipitation rates for quartz cement in sandstones determined by fuid inclusion microthermometry and temperature history modeling. Journal of Sedimentary Petrology, 60, 203–210.
  • Walderhaug, O., Bjørkum, P. A., Nadeau, P. H., & Langnes, O. (2001). Quantitative modeling of basin subsidence cause by temperaturedriven silica dissolution and reprecipitation. Petroleum Geoscience, 7, 107–114.
  • Waples, D. W. (1980). Time and temperature in petroleum formation: Application of Lopatin’s method to petroleum exploration. AAPG Bulletin, 64, 916–926.
  • Worden, R. H., & Morad, S. (2000). Quartz cementation in oil feld sandstones: a review of key controversies. In S. Morad & R. H. Worde (Eds.), Quartz Cementation in Sandstones (Vol. 29, pp. 1–20). Oxford: Special Publications of the IAS.
  • Wopenka, B., & Pasteris, J. D. (1993). Structural characterization of kerogens to granulite-facies graphite: Applicability of Raman microprobe spectroscopy. American Mineralogist, 78(5–6), 533–557.
  • Zinkernagel, U. (1978). Cathodoluminescence of quartz and its application to sandstone petrology. Contributions to Sedimentary Petrology, 8, 1–69.