Segmentación de mercado basada en las preferencias: aplicación de las Escalas de Máximas Diferencias y las Clases Latentes como estrategia para predecir el comportamiento del mercadoUna aplicación al Marketing de bebidas no alcohólicas

  1. Hernan Talledo 1
  2. Joaquín Sánchez Herrera 2
  1. 1 Universidad Peruana de Ciencias Aplicadas
    info

    Universidad Peruana de Ciencias Aplicadas

    Lima, Perú

    ROR https://ror.org/047xrr705

  2. 2 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

Aldizkaria:
GECONTEC: revista Internacional de Gestión del Conocimiento y la Tecnología

ISSN: 2255-5684

Argitalpen urtea: 2021

Alea: 9

Zenbakia: 1

Orrialdeak: 1-17

Mota: Artikulua

Beste argitalpen batzuk: GECONTEC: revista Internacional de Gestión del Conocimiento y la Tecnología

Laburpena

The study of consumer preferences and their decision process has been one of the most active areas of research in the last decade. The high failure rate of products of frequent consumption, as well as the increasing heterogeneity of demand, have led both academics and practitioners to search for models and techniques that are able to understand the complexity of markets and to unveil consumers' purchase intentions. This paper proposes the combination of “best-worst scaling” with latent class analysis. The former makes it possible to extract the value or "utility" that a given purchase alternative has for the consumer, while the latter uses this information to detect groups of consumers efficiently. To illustrate the procedure, it has been applied to a sample of 575 individuals in the soft drinks market, which reveals the usefulness and efficiency of this type of segmentation models.

Erreferentzia bibliografikoak

  • Akaike, H. (1987). Factor Analysis and AIC. Psychometrika--vol. 52, no. 3, 317-332 September
  • Allenby, G. M., Arora, N., and Ginter, J. L. (1995) "Incorporating Prior Knowledge into the Analysis of Conjoint Studies," Journal of Marketing Research, 32 (May) 152-62.
  • Böckenholt, Ulf (2006). “Thurstonian-based analyses: past, present, and future utilities”, Psychometrika—Vol. 71, No. 4, pgs 615–629. DOI: 10.1007/s11336-006-1598-5
  • Chrzan, K. y Patterson, M (2006) Testing for the Optimal Number of Attributes in MaxDiff Questions, disponible en https://sawtoothsoftware.com/resources/technical-papers/testing-for-the-optimal-number-of-attributes-in-maxdiff-questions recuperado el 27-05-2021
  • Chrzan, K y Orme, B. (2019) “Applied MaxDiff: A Practitioner’s Guide to Best-Worst Scaling”. Sawtooth Software Inc. 3210 N Canyon Rd Ste 202 Provo, UT 84604-6508 USA. ISBN 978-0-9993677-2-8 (full text, paper) ISBN 978-0-9993677-3-5 (full text, electronic) pag 5-8.
  • Chrzan, K y Orme, B. (2019) “Applied MaxDiff: A Practitioner’s Guide to Best-Worst Scaling”. Sawtooth Software Inc. 3210 N Canyon Rd Ste 202 Provo, UT 84604-6508 USA. ISBN 978-0-9993677-2-8 (full text, paper) ISBN 978-0-9993677-3-5 (full text, electronic). pag 49 a 53
  • Cohen, S.H. Maximum diference scaling: Improved measures of importance and preference for segmentation In Proceedings of the Sawtooth Software Conference Proceedings, Sequim, WA, USA, 15–17 April 2003.
  • Cohen, S. H., & Ramaswamy, V. (1998). Latent segmentation models. Marketing Research, 10(2), 14-21. Retrieved from disponible en https://search.proquest.com/scholarly-journals/latent-segmentation-models/docview/202690069/se 2?accountid=43860, 15-22.
  • DeSarbo, W., Wedel, M., Vriens, M., Ramaswamy, V., Latent Class Metric Conjoint Analysis Marketing Letters 3:3, (1992): 273-288
  • DeSarbo, W., Ramaswamy, V., and Cohen, S. (1995) “Market Segmentation with choice-based conjoint analysis.” Marketing Letters, 6 (2), 137-47.
  • Elrod, Terry; Kumar, Krishna: “Bias in the First Choice Rule for Predicting Share”. Proceedings of the Sawtooth Software Conference Vol 1 1989, pag 259-71
  • Finn, A y Louviere, J: Determining the Appropriate Response to Evidence of Public Concern: The Case of Food Safety. Journal of Public & Policy & Marketing, Vol 11(1), 1992
  • Green, Paul E. Srinivasan, V.:” Conjoint Analysis in Marketing: NewDevelopments with Implications for Research and Practice”, Journal of Marketing, October 1990.
  • Lockshin, L., Cohen, E., Using product and retail choice attributes for cross‐national segmentation. European Journal of Marketing 2009
  • Louviere, J.J.;Woodworth, G. Design and Analysis of Simulated Consumer Choice or Allocation Experiments: An Approach Based on Aggregate Data. J. Mark. Res. 1983, 20, 350–367
  • Louviere, J.J.;Woodworth, G. (1990), "Best-Worst Scaling: A Model for Largest Difference Judgments," working paper, Faculty of Business,University of Alberta.
  • The Latent Class Technical Paper Version 4.8, Sawtooth Software, Inc, disponible en https://sawtoothsoftware.com/resources/technical-papers/latent-class-technical-paper
  • Lighthouse Studio, disponible en https://sawtoothsoftware.com/lighthouse-studio
  • The MaxDiff System Technical Paper Version 9 Sawtooth Software, Inc. disponible en https://sawtoothsoftware.com/resources/technical-papers/maxdiff-technical-paper
  • Mueller, S.,y Rungie, C. Is there more information in best-worst choice data?. Using the attitude heterogeneity structure to identify consumer segments. International Journal of Wine Business Research Vol. 21 No. 1, 2009 pp. 24-40.
  • Naldi1, L and Cazzaniga S., Research Techniques Made Simple: Latent Class Analysis. Journal of Investigative Dermatology (2020) 140, 1676e1680; https://doi.org/10.1016/j.jid.2020.05.079
  • Nielsen (2018) “Setting the record straight on innovation failure”. The Nielsen Company.
  • Orme, Bryan: “Getting Started with Conjoint Analysis, Strategies for Product Design and Pricing Research”. 2014, pag 111
  • Orme, Bryan: “Getting Started with Conjoint Analysis, Strategies for Product Design and Pricing Research”. 2014, pag 93-109
  • Orme, B. y Chrzan, K; Become an Expert in Conjoint Analysis. Choice Modeling for Pros. Sawtooth Software, 2017, pag 207-212
  • Orme, B. y Chrzan, K; Become an Expert in Conjoint Analysis. Choice Modeling for Pros. Sawtooth Software, 2017, pag 144-155
  • Marley, A. A. y Louviere, J. J. (2005). “Some Probabilistic Models of Best- Worst and Best-Worst Choices”, Journal of Mathematical Psichology, 49, pgs. 464-480.
  • Sánchez Herrera, J; Talledo, H.: “Del Análisis Conjunto a las Escalas de Máximas Diferencias: un Estudio Comparativo entre Maxdiff y Escalas Monádicas, desde la Validez Convergente y Discriminante”, 2007, disponible en http://www.aemarkcongresos.com/congreso2007/investigacion/IM04-P.pdf , recuperado el 25 de abril de 2020.
  • Shaosheng Jin, Rao Yuan, Yan Zhang, ay Xin Jin (2019) “Chinese Consumers’ Preferences for Attributes of Fresh Milk: A Best–Worst Approach” International Journal of Environmental Research and Public Health
  • Schwarz, G. E. (1978): Estimating the dimension of a Model. Annals of Statistics. 6(2): 461-
  • Thurstone, L. L. (1928). “Attitudes can be Measured”, American Journal of Sociology, Vol. 33, pgs. 529-554.
  • Vázquez Casielles, Rodolfo:” Investigación de las Preferencias del Consumidor Mediante “Análisis Conjunto” Importancia para el Diseño de Nuevos Productos., ICE, págs. 149-163, Julio 1990
  • Vermunt, J.K., and Magidson, J. (2002). Latent class cluster analysis. In: J. A. Hagenaars and A. L. McCutcheon (Eds.), Applied Latent Class Analysis, 89-106. Cambridge: Cambridge University Press.