Neurofisiología de la memoria operativa viso-espacial

  1. Rubia Vila, Francisco J.
  2. Darlington, Margarita P.
  3. Fernández Frías, Carlos
  4. Barceló, Francesca
Revista:
Psicothema

ISSN: 0214-9915

Año de publicación: 1999

Volumen: 11

Número: 1

Páginas: 163-174

Tipo: Artículo

Otras publicaciones en: Psicothema

Resumen

El gran auge que ha experimentado en los últimos años el estudio de la memoria operativa, hace necesaria la recopilación de los hallazgos más relevantes de su funcionamiento y fisiología. En concreto, los estudios que a continuación se presentan tratan de determinar la naturaleza del componente viso-espacial de la memoria operativa. Para ello, se han recopilado investigaciones realizadas tanto en primates como en humanos. Éstas también incluyen estudios con muestra clínica. De este conjunto de investigaciones se desprende que hay una red de áreas corticales implicadas en la retención de un estímulo viso-espacial (p. ej. corteza prefrontal, áreas parietotemporales y occipitotemporales): y que estas regiones están muy próximas o posiblemente son las mismas que aquellas que codifican las características sensoriales de los estímulos. Es importante mantener una sintonía entre el laboratorio y la clínica diaria, que en último término va a ser la beneficiaria de los nuevos hallazgos sobre memoria viso-espacial

Referencias bibliográficas

  • Atkinson, R.C. y Shiffrin, R.M. (1968). Human memory: a proposed system and its control processes. In: K.W. Spence, J.T. Spence (Eds.). Psychology of Learning and Motivation: Advances in Research and Theory. Pp 89-195. New York: Academic.
  • Baddeley, A.D. (1986). Working Memory. Oxford: Oxford University Press.
  • Baddeley, A.D. (1992a). Working memory. Science, 225, 556-559.
  • Baddeley, A. D. (1992b). Working memory: The interface between memory and cognition Journal of Cognitive Neuroscience, 4, 281-288.
  • Baddeley, A.D., Della Sala S. y Spinnler, H. (1991). The two components hypothesis of memory deficit in Alzheimer's disease. Journal of Clinical and Experimental Neuropsychology, 13, 372-380.
  • Baddeley, A.D. y Hitch, G. (1974). Working memory. In: G. A. Bower (Ed). The psychology of learning and motivation.(vol. 8 pp.47-89). New York: Academic Press.
  • Baker, S.C., Frith, C.D., Frackowiak, R.S. J, y Dolan, R. J. (1996). Active representation of Shape and Spatial location in man. Cerebral Cortex, 6, 612-619.
  • Barceló, F., Martin-Loeches, y M., Rubia, EJ. (1997). Event-related potential during memorization for Spatial locations in the auditory and visual modalities. Electroencephalography and Clinical Neurophysiology, 2, 399-408.
  • Barret, S.E. y Rugg, M.D. (1990). Event-related potentials and the phonological matching of picture names. Brain Languaje, 38, 424-437.
  • Basso, A.., Spinnler, H., Vallar G., Zanobio, E. (1982). Left hemisphery damage and selective impairment of auditory verbal short-term memory. A case study. Neuropsychologia, 20, 263-274.
  • Corbetta, M, Miezin, F.M., Shulman, G.L., Petersen, S.E. (1993). A PET study of visuospatial attention. Journal of Neuroscience, 13, 1202-1226.
  • Craik, F.I.M. y Lockhart, R.S. (1972). Levels of processing: a framework for memory research. Journal of verbal learning and verbal behavior, 11, 671-684.
  • Friedman, D. (1990a). Cognitive event-related potential components during continuous recognition memory for pictures. Psychophysiology, 27, 136-148.
  • Friedman, D. (1990b). ERPs during continuous recognition memoy for words. Biological Psychology, 30, 61-88.
  • Friedman, H. R. y Goldman-Rakic P. (1994). Coactivation of the prefrontal cortex and inferior parietal cortex in working memory tasks revealed by 2DG functional mapping in the rhesus monkey. Journal of Neuroscience, 14, 393-402.
  • Friedman, D.y Sutton S. (1987). Event-related potentials during continuous recognition memory. In: R. Jonhson, Jr. J. W. Rohrbaugh and R. Parasuraman (Eds.). Current Trends in Event-related Potential Research. Electroencephalography and clinical Neurophysiology Suppl. 40. Elsevier Amsterdam 316-321.
  • Funahashi, S., Bruce, J.B., Goldman-Rakic P.S. (1989). Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex Journal of Neurophysiology 61, 331-349
  • Fuster, J.M.y Alexander, G.E. (1971). Neuronal activity related to short-term memory. Science 173, 652-654.
  • Fuster, J.M. (1973). Unit activity in prefrontal cortex during delayed-response performance: neural correlates of reminent memory. Journal of Neurophysiology 36, 61-78.
  • Fuster, J.M. (1989). The prefrontal cortex. Anatomy, physiology and neuropsychology of the frontal lobe. New ork: Raven
  • Fuster, J.M. (1990). Inferotemporal units in selective visual attention and short-term memory. Journal of Neurophysiology. Vol 64, 3, 681-697.
  • Fuster, J.M. (1995). Memory in the cerebral cortex. An empirial approach to neural networks in the human and nonhuman primate. Cambridge.Man: The MIT Press.
  • Fuster, J.M. (1997). Redes de memoria, Investigación y Ciencia, 250, julio 74-83.
  • Gevins, A.S., Cutillo B.C. (1993). Neuroelectric evidence for distributed processing in human working memory. Electrophysiology and clinical Neurophysiology, 87, 128-138.
  • Goldman-Rakic, P.S. (1987). Circuitry of the primate prefrontal cortex and regulation of behavior by representational memory. In: Handbook of physiology, the nervous system Plum F. (Ed.). Vol 9 pp 373-417. Bethesda, M.D.: American Psychological Society.
  • Goldman-Rakic, P.S. (1993). Working Memory and the mind. In Mind and Brain. New York: W.H. Freeman and Company.
  • Hanley, J.R., Young, A.W. y Pearson, N.A. (1991). Impairment of the visuospatial skecth pad. Quaterly Journal of Experimental Psychology: Human Experimental Psychology, 43A,101-125.
  • Jonides, J., Smith, E.E., Koeppe, R.A., Awh, E., Monoshima, S., Mintun, M.A. (1993). Spatial working memory in humans as revealed by PET. Nature, 363, 623-625.
  • Junqué, C. y Barroso, J. (1994). Neuropsicología. Madrid. Síntesis S.A..
  • Kojima, S., Matsumura, M. y Kubota, K (1981). Prefrontal neuron activity during delayed-response performance without imperativ GO signals in the monkey. Experimental. Neurology, 74,396-407.
  • Kojima, S. y Goldman-Rakic P.S. (1984). Functional analysis of spatially discriminative neurons in prefrontal cortex of rhesus monkey. Brain Research, 291, 229-240.
  • Kubota, K., Iwamoto y Suzuki H. (1974). Visuokinetic activities of primate prefrontal neurons during delayed-response performance. Journal of Neurophysiology, 37, 1.197-1.212.
  • Lang, W., Starr, A.., Lindinger, G. y Deecke, L. (1992). Cortical DC potential shifts accompaying auditory and visual short-term memory. Electronecephalography and clinical Neurophysiology, 82, 285-295.
  • Lange, K.W., Robbins T.W., Mardsen C.D., James M., Owen A.M. y Paul, G.M. (1992). LDopa withdrawal in Parkinson s disease selectively impairs cognitive performance in tests sensitive to frontal lobe dysfunction. Psychopharmacology, 107, 394-404.
  • Logie, R.H. (1986). Visuo-spatial processing in working memory. Quarterly Journal of Experimental Psychology, 38A,° 229-247.
  • Mangun, G.R. y Hillyard S.A. (1990a). Allocation of visual attention to spatial locations: tradeoff functions for event-related brain potentials and detection performance. Perception and Psychophysics, 47, 532-550.
  • Mangun, G.R., y Hillyard, S.A. (1990b). Electrophysiological studies of visual selective attention in humans. In: A.B. Scheible y A.F. Weschler (Eds.). Neurobiology of Higher Cognitive Function. Guildford Press New York pp. 271-295.
  • Malpani, C., Pillon, B., Dubois, B. y Agid, Y. (1994). Impaired simultaneuous cognitive task performance in Parkinson disease: A dopaminrelated dysfunction. Neurology, 44, 319-326
  • Martín-Loeches, M., Gómez-Jarabo,G. y Rubia F.J. (1994). Human brain potentials of spatial location encoding into memory. Electroencephalography and clinical Neurophysiology, 91, 363-373.
  • Martín-Loeches, M., Schweinberger, S. y Sommer, W. (1997). The phonological loop model of working memory: An ERP study of irrelevant speech and phonological similarity effects. Memory and Cognition, 25, 471-483.
  • Méndez, M.F., Méndez, M.A., Martín, R., Smyth, K.A. y Whitehouse, P.J. (1990). Complex visual distrubances in Alzheimer disease. Neurology, 40, 439-443.
  • Morris, R.D. y Kopelman, M.D. (1986). The memory deficits in Alzheimer-type dementia: A review. The Quarterly Jorunal of Experimental Psychology, 38A, 575-602.
  • Morris, R.D. y Baddeley, A.D. (1988). Primary and working memory functioning in Alzheimer-type dementia. Journal of Clinical and Experimental Neuropsychology,10, 279-296.
  • Niki, H. (1974). Prefrontal unit activity during delayed alternation. II Relation to absolute versus relative direction of response. Brain Research, 70, 346-349.
  • Norman, D.A. y Shallice, T. (1980). Attention to action. Willed and automatic control of behavior, University of California, San Diego, CHIP report 99.
  • Owen, A. M., Belsinka M., James M., Leigh E, Summers N., Marsden C.D., Quinn N.P., Sahakian B.J.y Robbins T.W. (1993). Visuospatial memory deficits at differente stages of Parkinson's disease. Neuropsychologia, 31, 627-644.
  • Patterson, J.V, Pratt H., Starr A. (1991). Event-related potentials correlates of the serial position effect in short-term memory. Electroencephalograpy and clinical Neurophysiology, 78, 424-437.
  • Perani, D., Bressi S., Cappa S.T., Vallar G., Alberoni M., Grassi F., Caltafione C., Cipolotti L., Franceschi M., Lenzi G y Fazio F. (1993). Evidence of multiple memory systems in the human Brain. A [18F] FDG PET metabolic study. Brain, 116, 903-919.
  • Peteresen, S.E., Corbetta, M., Miezin, F.M. y Shulman, G.L. (1994). PET studies of parietal involvement in spatial attention: comparison of different task types. Canadian Journal of Experimental Psychology, 48, 319-338.
  • Petrides, M. y Milner, B. (1982). Deficits on subject-ordered tasks afected frontal and temporal lobe lesions in man. Neuropsychologia, 20, 249-262.
  • Petrides, M, Alivisatos, B, Meyer, E. y Evans, A.C. (1993). Functional activation of the human frontal cortex during the performance of verbal working memory tasks. Proceedings of National Academy Science, USA 90, 878-882.
  • Pillon, B., Ertle S., Deweer, B., Bonnet A..M., Vidailhet, M. y Dubois B. (1997). Memory for spatial location in «de novo» parkinsonian patients. Neuropsychologia, 35, 3, 221-228.
  • Pillon, B., Ertle, S., Deewer, B., Sarazin, M., Agid, Y. y Dubois, B. (1996). Memory for spatial location is affected in Parkinson disease. Neuropsychología, 34, 77-85.
  • Pratt, H., Erez, A. y Geva, A.B. (1994). Lexically and modality effects in a memory scanning task. Brain Languaje, 46, 353-367.
  • Ruchkin, D.S., Johnson, R., Cannoune, H. y Ritter, W. (1990). Short-term memory storage and retention: an event-related brain potential study. Electroencephalography and clinical Neurophysiology, 419-439.
  • Ruchkin, D.S., Johnson R., Grafman, J., Canoune H.y Ritter, W. (1992). Distintion and similarities among working memory processes an event-related potentials study. Cognitive Brain Research, 1, 53-66.
  • Ruchkin, D.S., Johson S.R., Grafman J., Canoune H. y Ritter. W (1996). Multiple visuospatial working memory buffers: Evidence from spatiotemporal patterns of brain activity. Neuropsychologia, 35, 2, 195-209.
  • Rugg, M.D. y Doyle M.C. (1992). Event-related potentials and recognition memory for low frequency and high-frequency words. Journal of Cognitive Neuroscience, 4, 49-79.
  • Rugg, M.D. y Doyle M.C. (1994). Event-related potentials and stimulus repetition in direct and indirect tests of memory. En: Heinze, H., Munte, T., Mangun, G.R. (Eds.). Cognitive Electrophysiology, Birkhauser, Boston.
  • Ruiz-Vargas, J.M. (1991). Psicología de la memoria Madrid. Alianza editorial.
  • Shallice, T. (1988). From neuropsychology to mental structure. Cambridge. University Press.
  • Shallice, T. y Warrington, E.K. (1970). Independent functioning of verbal memory stores: a neuropsychological study. Quarterly Journal of Experimental Psychology, 22, 261-273.
  • Smith, M.E. (1993). Neuropsychological manifestations of recollective experience during recognition memory judgements. Journal of Cognitive Neuroscience, 5, 1-13.
  • Starr, A., Kristeva R., Cheyne D., Lindinger G., Deecke L. (1991). Localization of brain activity during auditory verbal short-term memory derived from magnetic recording. Brain Research, 558,181-190.
  • Ungerleider, L.G. (1995). Functional Brain Imaging. Studies of Cortical Mechanisms for Memory. Science, 270,769-774.
  • Wang, P y Bellugi, V. (1994). Evidence from two genetic syndromes for a disociation betwen verbal and visual-spatial short-term memory. Journal of Clinical and Experimental Neuroscience, 16, 317-322.
  • Warrington, E.K. y Weiskrantz, L. (1970). Amnesic syndrome consolidation or retrieval? Nature, 228, 629-630.
  • Wilson, B. y Baddeley A. (1995). Handbook of memory disorders. Oxford University Press.