Positive Periodic Solutions for a First Order Singular Ordinary Differential Equation Generated by Impulses
- Nieto, Juan J 1
- Uzal, José M 1
-
1
Universidade de Santiago de Compostela
info
ISSN: 1575-5460
Año de publicación: 2018
Volumen: 17
Número: 3
Páginas: 637-650
Tipo: Artículo
Otras publicaciones en: Qualitative theory of dynamical systems
Resumen
We extend recent results on the existence of positive periodic solutions for singular ordinary differential equations. The nonlinearity and the impulses satisfy weaker conditions and we present new examples.
Información de financiación
Financiadores
-
Ministerio de Economía y Competitividad
- AEI MTM2016-75140-P
-
Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia
- GRC2015-004
- R2016/022
Referencias bibliográficas
- 1. Agarwal, R.P., Franco, D., O’Regan, D.: Singular boundary value problems for first and second order impulsive differential equations. Aequ. Math. 69(1–2), 83–96 (2005). https://doi.org/10.1007/s00010-004-2735-9
- 2. Agarwal, R.P., O’Regan, D.: Existence criteria for singular boundary value problems with sign changing nonlinearities. J. Differ. Equ. 183(2), 409–433 (2002). https://doi.org/10.1006/jdeq.2001.4127
- 3. Agarwal, R.P., O’Regan, D.: Singular Differential and Integral Equations with Applications. Kluwer Academic Publishers, Dordrecht (2003). https://doi.org/10.1007/978-94-017-3004-4
- 4. Agarwal, R.P., Perera, K., O’Regan, D.: Multiple positive solutions of singular problems by variational methods. Proc. Am. Math. Soc. 134(3), 817–824 (2006). https://doi.org/10.1090/S0002-9939-05-07992-X
- 5. Ambrosetti, A., Coti Zelati, Periodic Solutions of Singular Lagrangian Systems. Birkhäuser, Boston Inc., Boston (1993). https://doi.org/10.1007/978-1-4612-0319-3
- 6. Bai, L., Nieto, J.J.: Variational approach to differential equations with not instantaneous impulses. Appl. Math. Lett. 73, 44–48 (2017). https://doi.org/10.1016/j.aml.2017.02.019
- 7. Bainov, D., Simeonov, P.: Impulsive Differential Equations: Periodic Solutions and Applications. Longman, Harlow (1993)
- 8. Bonanno, G., Rodríguez-López, R., Tersian, S.: Existence of solutions to boundary value problem for impulsive fractional differential equations. Fract. Calc. Appl. Anal. 17(3), 717–744 (2014). https://doi. org/10.2478/s13540-014-0196-y
- 9. Chen, X., Du, Z.: Existence of positive periodic solutions for a neutral delay predator-prey model with hassell-varley type functional response and impulse. Qual. Theory Dyn. Syst. (2017). https://doi.org/ 10.1007/s12346-017-0223-6
- 10. Chu, J., Nieto, J.J.: Impulsive periodic solutions of first-order singular differential equations. Bull. Lond. Math. Soc. 40(1), 143–150 (2008). https://doi.org/10.1112/blms/bdm110
- 11. Chu, J., Torres, P.J., Zhang, M.: Periodic solutions of second order non-autonomous singular dynamical systems. J. Differ. Equ. 239(1), 196–212 (2007). https://doi.org/10.1016/j.jde.2007.05.007
- 12. Dai, B., Bao, L.: Positive periodic solutions generated by impulses for the delay Nicholson’s blowflies model. Electron. J. Qual. Theory Differ. Equ. (2016). https://doi.org/10.14232/ejqtde.2016.1.4 (pp. Paper No. 4, 11)
- 13. Dong, L., Takeuchi, Y.: Impulsive control of multiple Lotka–Volterra systems. Nonlinear Anal. Real World Appl. 14(2), 1144–1154 (2013). https://doi.org/10.1016/j.nonrwa.2012.09.006
- 14. Gaines, R.E., Mawhin, J.L.: Coincidence Degree and Nonlinear Differential Equations. Springer, Berlin (1977). https://doi.org/10.1007/BFb0089537
- 15. Kong, F., Luo, Z.: Positive periodic solutions for a kind of first-order singular differential equation induced by impulses. Qual. Theory Dyn. Syst. (2017). https://doi.org/10.1007/s12346-017-0239-y
- 16. Lakshmikantham, V., Bainov, D.D., Simeonov, P.S.: Theory of Impulsive Differential Equations, vol. 6. World Scientific, Singapore (1989). https://doi.org/10.1142/0906
- 17. Nie, L.F., Teng, Z.D., Nieto, J.J., Jung, I.H.: State impulsive control strategies for a two-languages competitive model with bilingualism and interlinguistic similarity. Physica A 430, 136–147 (2015). https://doi.org/10.1016/j.physa.2015.02.064
- 18. Nieto, J.J., O’Regan, D.: Variational approach to impulsive differential equations. Nonlinear Anal. Real World Appl. 10(2), 680–690 (2009). https://doi.org/10.1016/j.nonrwa.2007.10.022
- 19. Perestyuk, N.A., Plotnikov, V.A., Samoilenko, A.M., Skripnik, N.V.: Differential Equations with Impulse Effects. Walter de Gruyter & Co, Berlin (2011). https://doi.org/10.1515/9783110218176
- 20. Rach ˚unková, I., Stanˇek, S., Tvrdý, M.: Solvability of Nonlinear Singular Problems for Ordinary Differential Equations. Hindawi Publishing Corporation, New York (2008)
- 21. Rach ˚unková, I., Tomeˇcek, J.: State-Dependent Impulses. Atlantis Press, Paris (2015). https://doi.org/ 10.2991/978-94-6239-127-7
- 22. Samoilenko, A.M., Perestyuk, N.A.: Impulsive Differential Equation. World Scientific Series on Nonlinear Science, vol. 14. World Scientific Publishing Co., Inc., River Edge (1995). https://doi.org/10. 1142/9789812798664
- 23. Stamova, I., Stamov, G.: Applied Impulsive Mathematical Models. Springer, Cham (2016). https://doi. org/10.1007/978-3-319-28061-5
- 24. Stamova, I.M., Stamov, G.T.: Functional and Impulsive Differential Equations of Fractional Order: Qualitative Analysis and Applications. CRC Press, Boca Raton (2017)
- 25. Sun, J., Chu, J., Chen, H.: Periodic solution generated by impulses for singular differential equations. J. Math. Anal. Appl. 404(2), 562–569 (2013). https://doi.org/10.1016/j.jmaa.2013.03.036
- 26. Tian, Y., Ge, W.: Applications of variational methods to boundary-value problem for impulsive differential equations. Proc. Edinb. Math. Soc. (2) 51(2), 509–527 (2008). https://doi.org/10.1017/ S0013091506001532
- 27. Zavalishchin, S.T., Sesekin, A.N.: Dynamic Impulse Systems. Kluwer Academic Publishers Group, Dordrecht (1997). https://doi.org/10.1007/978-94-015-8893-5
- 28. Zhou, H., Wang, W., Yang, L.: Permanence and stability of solutions for almost periodic prey-predator model with impulsive effects. Qual. Theory Dyn. Syst. (2017). https://doi.org/10.1007/s12346-017-0247-y