Parabolic problems with nonlinear dynamical boundary conditions and singular initial data

  1. José M. Arrieta 1
  2. Aníbal Rodríguez-Bernal 1
  3. Pavol Quittner 2
  1. 1 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

  2. 2 Comenius University
    info

    Comenius University

    Bratislava, Eslovaquia

    ROR https://ror.org/0587ef340

Revista:
Differential and Integral Equations

ISSN: 0893-4983

Año de publicación: 2001

Volumen: 14

Número: 12

Páginas: 1487-1510

Tipo: Artículo

Otras publicaciones en: Differential and Integral Equations

Referencias bibliográficas

  • [1] H. Amann, “Linear and Quasilinear Parabolic Problems, Volume I: Abstract Linear Theory,” Birkhäuser, 1995.
  • [2] H. Amann, Semigroups and nonlinear evolution equations, Linear Algebra Appl., 84 (1986), 3–32.
  • [3] H. Amann, Parabolic evolution equations and nonlinear boundary conditions, J. Differ. Equations, 72 (1988), 201–269.
  • [4] H. Amann and J. Escher, Strongly continuous dual semigroups,, Ann. Mat. Pura Appl. CLXXI (1996), 41–62.
  • [5] J.M. Arrieta and A.N. Carvalho, Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations, Trans. Amer. Math. Soc., 352 (2000), 285–310.
  • [6] J.M. Arrieta, A.N. Carvalho, and A. Rodríguez-Bernal, Parabolic problems with nonlinear boundary conditions and critical nonlinearities, J. Differ. Equations, 156 (1999), 376–406.
  • [7] M. Ben-Artzi, P. Souplet, and F.B. Weissler, Sur la non-existence et la non-unicité des solutions du problème de Cauchy pour une ´equation parabolique semi-linéaire, C. R. Acad. Sci. Paris, 329 (1999), 371–376.
  • [8] H. Brezis and T. Cazenave, A nonlinear heat equation with singular initial data, J. Anal. Math., 68 (1996), 277–304.
  • [9] J. Escher, Nonlinear elliptic systems with dynamical boundary conditions, Math. Z., 210 (1992), 413–439.
  • [10] J. Escher, Quasilinear parabolic systems with dynamical boundary conditions, Comm. Partial Differ. Equations, 18 (1993), 1309–1364.
  • [11] J. Escher, On quasilinear fully parabolic boundary value problems, Differ. Integral Equations, 7 (1994), 1325–1343.
  • [12] J. Escher, On the qualitative behaviour of some semilinear parabolic problems, Differ. Integral Equations, 8 (1995), 247–267.
  • [13] M. Fila and P. Quittner, Global solutions of the Laplace equation with a nonlinear boundary condition, Math. Meth. Appl. Sci., 20 (1997), 1325–1333.
  • [14] M. Fila and P. Quittner, Large time behavior of solutions of a semilinear parabolic equation with a nonlinear dynamical boundary condition, in “Topics in Nonlinear Analysis” (The Herbert Amann Anniversary Volume), Birkhäuser, 1998, 251–272.
  • [15] A.Rodríguez–Bernal and E. Zuazua, Parabolic singular limit of a wave equation with localized boundary damping, Discrete Contin. Dynamical Systems, 1 (1995), 303–346.
  • [16] H. Triebel, “Interpolation Theory, Function Spaces, Differential Operators,” NorthHolland, Amsterdam, 1978.