Parabolic singular limit of a wave equation with localized boundary damping

  1. Aníbal Rodríguez-Bernal
  2. Enrique Zuazua 1
  1. 1 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

Revista:
Discrete & Continuous Dynamical Systems

ISSN: 1553-5231 1078-0947

Año de publicación: 1995

Volumen: 1

Número: 3

Páginas: 303-346

Tipo: Artículo

DOI: 10.3934/DCDS.1995.1.303 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Discrete & Continuous Dynamical Systems

Referencias bibliográficas

  • [1] J.M. Ball, Strongly continuous semigroups, weak solutions and the variation of constants formula, Proc. Amer. Math. Soc., 63 (1977), 370–373 .
  • [2] C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation control and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024–1065.
  • [3] H. Brezis, “Analyse Fonctionnelle et Applications,” Masson, 1983.
  • [4] E.B. Davies, “One Parameter Semigroups,” London Math. Soc. Monographs, vol. 15, Academic Press, 1980.
  • [5] G. Chen, Energy decay estimates and exact boundary value controllability for the wave equation in a bounded domain, J. Math. Pures Appl., 58 (1979), 249–274.
  • [6] A. Friedman, “Partial Differential Equations,” Holt Rinehart Winston, 1969.
  • [7] A. Friedman and M. Shinbrot, The initial value problem for the linearized equations of water waves, J. Math. Mech., 17 (1967), 107–180.
  • [8] R.M. Garipov, On the linear theory of gravity waves: the theorem of existence and uniqueness, Arch. Rat. Mech. Anal., 24 (1966), 352–362.
  • [9] P. Grisvard, Caracterisation de quelques espaces d’interpolation, Arch. Rat. Mech. Anal., 25 (1967), 40–63.
  • [10] P. Grisvard, “Elliptic Problems in Nonsmooth Domains,” Pitman, 1985.
  • [11] J. Hale and G. Raugel, Upper semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Diff. Eqs., 73 (1988), 197–214.
  • [12] D. Henry, “Geometric Theory of Semilinear Parabolic Equations,” Lecture Notes in Math., vol. 840, Springer, 1982.
  • [13] D. Henry, “Evolution Equations in Banach Spaces,” Course Notes, Inst. Mat. Est., Universidad de S˜ao Paulo, Brazil, 1981.
  • [14] V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation, J. Math. Pures Appl., 69 (1990), 33–55.
  • [15] J. Lagnese, Note on the boundary stabilization of wave equations, SIAM J. Control Optim., 26 (1988), 1250–1256.
  • [16] J. Lagnese, “Boundary Stabilization of Thin Plates”, SIAM Studies in Appl. Math., vol. 10, 1989 .
  • [17] I. Lasiecka and R. Tataru, scshape Uniform boundary stabilization of semilinear wave equation with nonlinear boundary conditions, Diff. and Int. Eqns, to appear.
  • [18] I. Lasiecka and R. Triggiani, Uniform exponential decay of wave equation in a bounded region with L2(0,∞; L2(Γ))- feedback control in the Dirichlet boundary condition, J. Diff. Eqns., 66 (1987), 340–390.
  • [19] J.L. Lions and E.Magenes, “Problèmes aux Limites non Homogènes et Applications,” vol.1, Dunod, 1968.
  • [20] J.L. Lions, “Quelques Méthodes de rèsolution des Problèmes aux Limites non Lineaires,” Dunod, 1969.
  • [21] J.L. Lions, “Exact controllability, stabilizability and perturbations for distributed systems,” SIAM Rev., 10 (1988), 1–68.
  • [22] X. Mora, Finite-dimensional attracting invariant manifolds for damped semilinear wave equations, Res. Notes in Math., 155 (1987), 172–183.
  • [23] A. Pazy, “Semigroups of Linear Operators and Applications to Partial Differential Equations,” Appl. Math. Sci., vol. 44, Springer, 1983.
  • [24] J.P. Quinn and D.L. Russell, Asymptotic stability and energy decay rates for solutions of hyperbolic equations with boundary damping, Proc. Roy. Soc. Edinburgh, Sect A, 77 (1977), 97–127.
  • [25] D.L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Rev., 20 (1978), 199–229.
  • [26] E. Zuazua, Uniform stabilization of the wave equation by nonlinear boundary feedback, SIAM J. Control Opt., 28 (1989), 265–268.