Impact of lifestyle on health-related quality of life among young university students: a cross-sectional study

  1. de-la-Plaza-San-Frutos, Marta 1
  2. Pareja-Galeano, Helios 2
  3. Pérez-Chao, Enrique Alonso 1
  4. Martínez-Jiménez, Eva María 1
  5. Sánchez-Pinto-Pinto, Beatriz 3
  6. Romero-Morales, Carlos 1
  7. García-Pérez-de-Sevilla, Guillermo 1
  1. 1 Universidad Europea de Madrid
    info

    Universidad Europea de Madrid

    Madrid, España

    ROR https://ror.org/04dp46240

  2. 2 Universidad Autónoma de Madrid
    info

    Universidad Autónoma de Madrid

    Madrid, España

    ROR https://ror.org/01cby8j38

  3. 3 Hospital Universitario Puerta de Hierro
    info

    Hospital Universitario Puerta de Hierro

    Madrid, España

    ROR https://ror.org/01e57nb43

  4. 4 Universidad Alfonso X el Sabio
    info

    Universidad Alfonso X el Sabio

    Villanueva de la Cañada, España

    ROR https://ror.org/054ewwr15

  5. 5 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

Revista:
Sao Paulo Medical Journal

ISSN: 1806-9460 1516-3180

Año de publicación: 2021

Volumen: 139

Número: 5

Páginas: 443-451

Tipo: Artículo

DOI: 10.1590/1516-3180.2021.0138.R2.120321 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Sao Paulo Medical Journal

Resumen

BACKGROUND:Lifestyle is strongly involved in the pathogenesis and progression of non-communicable diseases, and has a great impact on quality of life. The goal of the present study was to analyze the lifestyle and body composition (BC) of young university students during the pandemic, and their relationship with health-related quality of life (HrQoL).DESIGN AND SETTING:Observational cross-sectional study conducted in the Universidad Europea de Madrid, Spain.METHODS:A total sample of 56 healthy university students was recruited. Activity, sitting time, adherence to Mediterranean diet and BC were measured.RESULTS:Regarding BC, only 5% and 10.7% of the subjects had health risk values for waist circumference and waist-to-height ratio, respectively. The mean daily sitting-time was 8.26 hours, while 19.64% of the subjects spent . 10 hours per day sitting. 92.86% of the subjects complied with the World Health Organization 2020 physical activity recommendations. The mean PREDIMED score was 7.41, while 51.8% of the subjects had low adherence to the Mediterranean diet. Regarding HrQoL, 22 subjects (39.2%) and 26 subjects (46.4%) were in the lowest quintile of physical component summary and mental component summary, respectively, according to the reference values for their age range. There was a negative correlation between physical function and sitting time (r = -0.38).CONCLUSIONS:There were high levels of sedentary behavior and low HrQoL values, with a negative moderate correlation between these variables. The findings from the present study especially highlight the importance of implementing public health programs targeting reduction of sitting time among university students.

Referencias bibliográficas

  • 1. Schwingshackl L, Morze J, Hoffmann G. Mediterranean diet and health status: Active ingredients and pharmacological mechanisms. Br J Pharmacol. 2020;177(6):1241-57. PMID: 31243760; https://doi.org/10.1111/bph.14778 » https://doi.org/10.1111/bph.14778
  • 2. Mak YW, Kao AHF, Tam LWY, et al. Health-promoting lifestyle and quality of life among Chinese nursing students. Prim Heal Care Res Dev. 2018;19(6):629-36. PMID: 29623871; https://doi.org/10.1017/S1463423618000208 » https://doi.org/10.1017/S1463423618000208
  • 3. Arocha Rodulfo JI. Sedentarism, a disease from XX’ century. Clin Investig Arterioscler. 2019;31(5):233-40. PMID: 31221536; https://doi.org/10.1016/j.arteri.2019.04.004 » https://doi.org/10.1016/j.arteri.2019.04.004
  • 4. WHO. Global recommendations on physical activity for health. Geneva: WHO Press, World Health Organization; 2010. Available from: https://www.who.int/publications/i/item/9789241599979 Accessed in 2021 (May 11). » https://www.who.int/publications/i/item/9789241599979
  • 5. Global action plan on physical activity 2018–2030: more active people for a healthier world. Geneva: World Health Organization; 2018. Available from: https://apps.who.int/iris/bitstream/handle/10665/272722/9789241514187-eng.pdf Accessed in 2021 (Mar 19). » https://apps.who.int/iris/bitstream/handle/10665/272722/9789241514187-eng.pdf
  • 6. Booth FW, Roberts CK, Thyfault JP, Ruegsegger GN, Toedebusch RG. Role of Inactivity in Chronic Diseases: Evolutionary Insight and Pathophysiological Mechanisms. Physiol Rev. 2017;97(4):1351-402. PMID: 28814614; https://doi.org/10.1152/physrev.00019.2016 » https://doi.org/10.1152/physrev.00019.2016
  • 7. Matthews CE, Keadle SK, Troiano RP, et al. Accelerometer-measured dose-response for physical activity, sedentary time, and mortality in US adults. Am J Clin Nutr. 2016;104(5):1424-32. PMID: 27707702; https://doi.org/10.3945/ajcn.116.135129 » https://doi.org/10.3945/ajcn.116.135129
  • 8. Katzmarzyk PT, Powell KE, Jakicic JM, et al. Sedentary Behavior and Health: Update from the 2018 Physical Activity Guidelines Advisory Committee. Med Sci Sports Exerc. 2019;51(6):1227-41. PMID: 31095080; https://doi.org/10.1249/MSS.0000000000001935 » https://doi.org/10.1249/MSS.0000000000001935
  • 9. Aboonabi A, Meyer RR, Singh I. The association between metabolic syndrome components and the development of atherosclerosis. J Hum Hypertens. 2019;33(12):844-55. PMID: 31636352; https://doi.org/10.1038/s41371-019-0273-0 » https://doi.org/10.1038/s41371-019-0273-0
  • 10. Schaffler A, Scholmerich J, Buchler C. Mechanisms of disease: adipocytokines and visceral adipose tissue-emerging role in intestinal and mesenteric diseases. Nat Clin Pract Gastroenterol Hepatol. 2005;2(2):103-11. PMID: 16265128; https://doi.org/10.1038/ncpgasthep0090 » https://doi.org/10.1038/ncpgasthep0090
  • 11. Eckardt K, Gorgens SW, Raschke S, Eckel J. Myokines in insulin resistance and type 2 diabetes. Diabetologia. 2014;57(6):1087-99. PMID: 24676645; https://doi.org/10.1007/s00125-014-3224-x » https://doi.org/10.1007/s00125-014-3224-x
  • 12. Diaz BB, Gonzalez DA, Gannar F, Perez MCR, de Leon AC. Myokines, physical activity, insulin resistance and autoimmune diseases. Immunol Lett. 2018;203:1-5. PMID: 30194964; https://doi.org/10.1016/j.imlet.2018.09.002 » https://doi.org/10.1016/j.imlet.2018.09.002
  • 13. Bluher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019;15(5):288-98. PMID: 30814686; https://doi.org/10.1038/s41574-019-0176-8 » https://doi.org/10.1038/s41574-019-0176-8
  • 14. Karczewski J, Sledzihska E, Baturo A, et al. Obesity and inflammation. Eur Cytokine Netw. 2018;29(3):83-94. PMID: 30547890; https://doi.org/10.1684/ecn.2018.0415 » https://doi.org/10.1684/ecn.2018.0415
  • 15. Reilly SM, Saltiel AR. Adapting to obesity with adipose tissue inflammation. Nat Rev Endocrinol. 2017;13(11):633-43. PMID: 28799554; https://doi.org/10.1038/nrendo.2017.90 » https://doi.org/10.1038/nrendo.2017.90
  • 16. Asghar A, Sheikh N. Role of immune cells in obesity induced low grade inflammation and insulin resistance. Cell Immunol. 2017;315:18-26. PMID: 28285710; https://doi.org/10.1016/j.cellimm.2017.03.001 » https://doi.org/10.1016/j.cellimm.2017.03.001
  • 17. Saltiel AR. ‘nsulin resistance in the defense against obesity. Cell Metab. 2012;15(6):798-804. PMID: 22682220; https://doi.org/10.1016/j.cmet.2012.03.001 » https://doi.org/10.1016/j.cmet.2012.03.001
  • 18. Avgerinos KI, Spyrou N, Mantzoros CS, Dalamaga M. Obesity and cancer risk: Emerging biological mechanisms and perspectives. Metabolism. 2019 Mar;92:121-135. PMID: 30445141; https://doi.org/10.1016/j.metabol.2018.11.001. » https://doi.org/10.1016/j.metabol.2018.11.001.
  • 19. Weber Buchholz S, Wilbur J, Halloway S, McDevitt JH, Schoeny ME. Physical activity intervention studies and their relationship to body composition in healthy women. Annu Rev Nurs Res. 2013;31:71-142. PMID: 24894138; https://doi.org/10.1891/0739-6686.31.71 » https://doi.org/10.1891/0739-6686.31.71
  • 20. Welc SS, Clanton TL. The regulation of interleukin-6 implicates skeletal muscle as an integrative stress sensor and endocrine organ. Exp Physiol. 2013;98(2):359-71. PMID: 22941979; https://doi.org/10.1113/expphysiol.2012.068189 » https://doi.org/10.1113/expphysiol.2012.068189
  • 21. Nimmo MA, Leggate M, Viana JL, King JA. The effect of physical activity on mediators of inflammation. Diabetes Obes Metab. 2013;15 Suppl 3:51-60. PMID: 24003921; https://doi.org/10.1111/dom.12156 » https://doi.org/10.1111/dom.12156
  • 22. Wedell-Neergaard AS, Krogh-Madsen R, Petersen GL, et al. Cardiorespiratory fitness and the metabolic syndrome: Roles of inflammation and abdominal obesity. PLoS One. 2018;13(3):e0194991. PMID: 29590212; https://doi.org/10.1371/journal.pone.0194991 » https://doi.org/10.1371/journal.pone.0194991
  • 23. Pedersen BK. Anti-inflammatory effects of exercise: role in diabetes and cardiovascular disease. Eur J Clin Invest. 2017;47(8):600-11. PMID: 28722106; https://doi.org/10.1111/eci.12781 » https://doi.org/10.1111/eci.12781
  • 24. Tsigalou C, Konstantinidis T, Paraschaki A, et al. Mediterranean Diet as a Tool to Combat Inflammation and Chronic Diseases. An Overview. Biomedicines. 2020;8(7):201. PMID: 32650619; https://doi.org/10.3390/biomedicines8070201 » https://doi.org/10.3390/biomedicines8070201
  • 25. Bendall CL, Mayr HL, Opie RS, et al. Central obesity and the Mediterranean diet: A systematic review of intervention trials. Crit Rev Food Sci Nutr. 2018;58(18):3070-84. PMID: 29039967; https://doi.org/10.1080/10408398.2017.1351917 » https://doi.org/10.1080/10408398.2017.1351917
  • 26. Ramon-Arbues E, Martinez-Abadia B, Granada-Lopez JM, et al. Association between adherence to the Mediterranean diet and the prevalence of cardiovascular risk factors. Rev Lat Am Enfermagem. 2020;28:e3295. PMID: 32520245; https://doi.org/10.1590/1518-8345.3904.3295 » https://doi.org/10.1590/1518-8345.3904.3295
  • 27. Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265-9. PMID: 32015508; https://doi.org/10.1038/s41586-020-2008-3 Erratum in: Nature. 2020 Apr;580(7803):E7. » https://doi.org/10.1038/s41586-020-2008-3
  • 28. Velavan TP, Meyer CG. The COVID-19 epidemic. Trop Med Int Health. 2020;25(3):278-80. PMID: 32052514; https://doi.org/10.1111/tmi.13383 » https://doi.org/10.1111/tmi.13383
  • 29. Wijesooriya NR, Mishra V, Brand PLP, Rubin BK. COVID-19 and telehealth, education, and research adaptations. Paediatr Respir Rev. 2020;35:38-42. PMID: 32653468; https://doi.org/10.1016/j.prrv.2020.06.009 » https://doi.org/10.1016/j.prrv.2020.06.009
  • 30. Castaneda-Babarro A, Arbillaga-Etxarri A, Gutierrez-Santamaria B, Coca A. Physical Activity Change during COVID-19 Confinement. Int J Environ Res Public Health. 2020;17(18):6878. PMID: 32967091; https://doi.org/10.3390/ijerph17186878 » https://doi.org/10.3390/ijerph17186878
  • 31. Patterson R, McNamara E, Tainio M, et al. Sedentary behaviour and risk of all-cause, cardiovascular and cancer mortality, and incident type 2 diabetes: a systematic review and dose response meta-analysis. Eur J Epidemiol. 2018;33(9):811-29. PMID: 29589226; https://doi.org/10.1007/s10654-018-0380-1 » https://doi.org/10.1007/s10654-018-0380-1
  • 32. Sanchez-Sanchez E, Ramirez-Vargas G, Avellaneda-Lopez Y, et al. Eating Habits and Physical Activity of the Spanish Population during the COVID-19 Pandemic Period. Nutrients. 2020;12(9):2826. PMID: 32942695; https://doi.org/10.3390/nu12092826 » https://doi.org/10.3390/nu12092826
  • 33. Zaragoza-Marti A, Cabanero-Martinez MJ, Hurtado-Sanchez JA, Laguna-Perez A, Ferrer-Cascales R. Evaluation of Mediterranean diet adherence scores: a systematic review. BMJ Open. 2018;8(2):e019033. PMID: 29478018; https://doi.org/10.1136/bmjopen-2017-019033 » https://doi.org/10.1136/bmjopen-2017-019033
  • 34. Cobo-Cuenca AI, Garrido-Miguel M, Soriano-Cano A, et al. Adherence to the Mediterranean Diet and Its Association with Body Composition and Physical Fitness in Spanish University Students. Nutrients. 2019;11(11):2830. PMID: 31752296; https://doi.org/10.3390/nu11112830 » https://doi.org/10.3390/nu11112830
  • 35. Antonopoulou M, Mantzorou M, Serdari A, et al. Evaluating Mediterranean diet adherence in university student populations: Does this dietary pattern affect students’ academic performance and mental health? Int J Health Plann Manage. 2020;35(1):5-21. PMID: 31514237; https://doi.org/10.1002/hpm.2881 » https://doi.org/10.1002/hpm.2881
  • 36. Peterson NE, Sirard JR, Kulbok PA, DeBoer MD, Erickson JM. Sedentary behavior and physical activity of young adult university students. Res Nurs Health. 2018;41(1):30-8. PMID: 29315656; https://doi.org/10.1002/nur.21845 » https://doi.org/10.1002/nur.21845
  • 37. Castro O, Bennie J, Vergeer I, Bosselut G, Biddle SJH. How Sedentary Are University Students? A Systematic Review and Meta-Analysis. Prev Sci. 2020;21(3):332-43. PMID: 31975312; https://doi.org/10.1007/s11121-020-01093-8 » https://doi.org/10.1007/s11121-020-01093-8
  • 38. Vankim NA, Nelson TF. Vigorous physical activity, mental health, perceived stress, and socializing among college students. Am J Health Promot. 2013;28(1):7-15. PMID: 23470187; https://doi.org/10.4278/ajhp.111101-QUAN-395 » https://doi.org/10.4278/ajhp.111101-QUAN-395
  • 39. Snedden TR, Scerpella J, Kliethermes SA, et al. Sport and Physical ActivityLevel Impacts Health-Related Quality of Life Among Collegiate Students. Am J Health Promot. 2019;33(5):675-82. PMID: 30586999; https://doi.org/10.1177/0890117118817715 » https://doi.org/10.1177/0890117118817715
  • 40. Nowak PF, Bozek A, Blukacz M. Physical Activity, Sedentary Behavior, and Quality of Life among University Students. Biomed Res Int. 2019;2019:9791281. PMID: 31930143; https://doi.org/10.1155/2019/9791281 » https://doi.org/10.1155/2019/9791281
  • 41. Vilagut G, Valderas JM, Ferrer M, et al. I nterpretacion de los cuestionarios de salud SF-36 y SF-12 en Espana: Componentes fisico y mental [Interpretation of SF-36 and SF-12 questionnaires in Spain: physical and mental components]. Med Clin (Barc). 2008;130(19):726-35. PMID: 18570798; https://doi.org/10.1157/13121076 » https://doi.org/10.1157/13121076
  • 42. Ubeda-Colomer J, Devis-Devis J, Sit CHP. Barriers to physical activity in university students with disabilities: Differences by sociodemographic variables. Disabil Health J. 2019;12(2):278-86. PMID: 30446481; https://doi.org/10.1016/j.dhjo.2018.11.005 » https://doi.org/10.1016/j.dhjo.2018.11.005
  • 43. Schroder H, Fito M, Estruch R, et al. A short screener is valid for assessing Mediterranean diet adherence among older Spanish men and women. J Nutr. 2011 Jun;141(6):1140-5. PMID: 21508208; https://doi.org/10.3945/jn.110.135566 » https://doi.org/10.3945/jn.110.135566
  • 44. Martinez-Gonzalez MA, Garcia-Arellano A, Toledo E, et al. A 14-item Mediterranean diet assessment tool and obesity indexes among high-risk subjects: the PRED'MED trial. PLoS One. 2012;7(8):e43134. PMID: 22905215; https://doi.org/10.1371/journal.pone.0043134 » https://doi.org/10.1371/journal.pone.0043134
  • 45. Alonso J, Prieto L, Anto JM. La version espanola del SF-36 Health Survey (Cuestionario de Salud SF-36): un instrumento para la medida de los resultados clinicos. Med Clin. 1995;104(20):771-6. Available from: https://www.uv.es/docmed/documed/documed/705.html Accessed in 2021 (May 12). » https://www.uv.es/docmed/documed/documed/705.html
  • 46. Zimmet P, M M Alberti KG, Serrano Rios M. Una nueva definition mundial del sindrome metabolico propuesta por la federacion Internacional de Diabetes: fundamento y resultados [A new international diabetes federation worldwide definition of the metabolic syndrome: the rationale and the results]. Rev Esp Cardiol. 2005;58(12):1371-6. PMID: 16371194; https://doi.org/10.1016/S0300-8932(05)74065-3 Erratum in: Rev Esp Cardiol. 2006;59(2):185. » https://doi.org/10.1016/S0300-8932(05)74065-3
  • 47. Swainson MG, Batterham AM, Tsakirides C, Rutherford ZH, Hind K. Prediction of whole-body fat percentage and visceral adipose tissue mass from five anthropometric variables. PLoS One. 2017;12(5):e0177175. PMID: 28493988; https://doi.org/10.1371/journal.pone.0177175 » https://doi.org/10.1371/journal.pone.0177175
  • 48. Leggio M, Lombardi M, Caldarone E, Mazza A, Fusco A. H igh body mass index, healthy metabolic profile and low visceral adipose tissue: The paradox is to call it obesity again. Eur J Intern Med. 2018;52:e15-e16. PMID: 29636273; https://doi.org/10.1016/j.ejim.2018.03.019 » https://doi.org/10.1016/j.ejim.2018.03.019
  • 49. Kang YM, Jung CH, Cho YK, et al. Visceral adiposity index predicts the conversion of metabolically healthy obesity to an unhealthy phenotype. PLoS One. 2017;12(6):e0179635. PMID: 28644850; https://doi.org/10.1371/journal.pone.0179635 » https://doi.org/10.1371/journal.pone.0179635
  • 50. Ghasemi A, Zahediasl S. Normality tests for statistical analysis: a guide for non-statisticians. Int J Endocrinol Metab. 2012 Spring;10(2):486-9. PMID: 23843808; https://doi.org/10.5812/ijem.3505 » https://doi.org/10.5812/ijem.3505
  • 51. Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3-13. PMID: 19092709; https://doi.org/10.1249/MSS.0b013e31818cb278 » https://doi.org/10.1249/MSS.0b013e31818cb278
  • 52. Matthews CE, George SM, Moore SC, et al. Amount of time spent in sedentary behaviors and cause-specific mortality in US adults. Am J Clin Nutr. 2012;95(2):437-45. PMID: 22218159; https://doi.org/10.3945/ajcn.111.019620 » https://doi.org/10.3945/ajcn.111.019620
  • 53. Bull FC, Al-Ansari SS, Biddle S, et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med. 2020;54(24):1451-62. PMID: 33239350; https://doi.org/10.1136/bjsports-2020-102955 » https://doi.org/10.1136/bjsports-2020-102955
  • 54. Navarro-Ibarra MJ, Hernandez J, Caire-Juvera G. Diet, physical activity and telomere length in adults. Nutr Hosp. 2019;36(6):1403-17. PMID: 31657606; https://doi.org/10.20960/nh.02673 » https://doi.org/10.20960/nh.02673
  • 55. Pratesi A, Tarantini F, Di Bari M. Skeletal muscle: an endocrine organ. Clin Cases Miner Bone Metab. 2013;10(1):11-4. PMID: 23858303; https://doi.org/10.11138/ccmbm/2013.10.1.011 » https://doi.org/10.11138/ccmbm/2013.10.1.011
  • 56. Lopez-Lopez D, Cancela-Carral JM, Araujo R, et al. Association between sex differences on foot health related to the quality of life in a sample of sedentary people. Rev Assoc Med Bras (1992). 2019;65(2):149-55. PMID: 30892437; https://doi.org/10.1590/1806-9282.65.2.149 » https://doi.org/10.1590/1806-9282.65.2.149
  • 57. Rodriguez-Sanz D, Barbeito-Fernandez D, Losa-Iglesias ME, et al. Foot health and quality of life among university students: cross-sectional study. Sao Paulo Med J. 2018;136(2):123-8. PMID: 29617469; https://doi.org/10.1590/1516-3180.2017.0264230917 » https://doi.org/10.1590/1516-3180.2017.0264230917
  • 58. Jablonowska-Lietz B, Wrzosek M, Wtodarczyk M, Nowicka G. New indexes of body fat distribution, visceral adiposity index, body adiposity index, waist-to-height ratio, and metabolic disturbances in the obese. Kardiol Pol. 2017;75(11):1 185–91. PMID: 28715064; https://doi.org/10.5603/KP.a2017.0149 » https://doi.org/10.5603/KP.a2017.0149
  • 59. Hyun YY, Lee KB, Chung W, et al. Body Mass Index, waist circumference, and health-related quality of life in adults with chronic kidney disease. Qual Life Res. 2019;28(4):1075-83. PMID: 30535570; https://doi.org/10.1007/s11136-018-2084-0 » https://doi.org/10.1007/s11136-018-2084-0