Sets of numbers from complex networks perspective
- Solares Hernández, Pedro Antonio
- Miguel Angel García March Doktorvater/Doktormutter
- José Alberto Conejero Casares Doktorvater/Doktormutter
Universität der Verteidigung: Universitat Politècnica de València
Fecha de defensa: 30 von September von 2021
- Pedro Fernández de Córdoba Castellá Präsident/in
- Gustavo Adolfo Muñoz Fernández Sekretär
- Natalia Romero Álvarez Vocal
Art: Dissertation
Zusammenfassung
The study of Complex Systems is one of the scientific fields that has had the highest productivity in recent decades and has not ceased to fascinate the community dedicated to studying its properties. In particular, Network Science has proven to be one of the most prolific areas within Complex Systems. In recent years, his methods have been applied to model multiple phenomena in real life, both naturally generated, such as in biology, and due to the actions and interactions of man, such as social networks or communication networks. Recently, it has been seen how the methods of Network Science can be applied in the context of mathematics, as is the case of Number Theory. One of the most studied cases is networks whose elements are numbers and which are related through the divisibility relation. The main objective of this thesis is to extend these studies to other sets of numbers. On the one hand, we study the divisibility in natural numbers when we obtain these from Pascal matrices of increasing size, which allows us to extract non-sequential sets of numbers with non-constant increments between them. On the other hand, we study the case of the divisibility relation of rational numbers. Cantor's diagonal argument provides a way to order all rational numbers, which allows us to check to what extent some of the properties observed for the divisibility of natural numbers are extensible to a more general context. The thesis is divided into 4 Chapters. Chapter 1 contains a general introduction to the thesis and it is structured into 6 sections. In Sections 1.1 and 1.2, we briefly introduce Network Science, show some application examples, and motivate the study of networks of numbers generated from the divisibility property. In Section 1.3, we define the objectives of this PhD thesis and its scope. In Section 1.4, we present the notion of network, its representations, and some measures that can be calculated on them, such as nodes degrees, their distribution, the assortativity and the clustering coefficients. In another hand, in Section 1.5, we review the best-known network models such as Erdo¿s and Re'nyi random networks, Watts and Strogatz small-world networks, Baraba'si and Albert scale-free networks, and hierarchical networks. Finally, at the end of this Chapter 1, we show in Section 1.6 a review of various studies carried out in order to apply Network Science methods to problems and properties that arise in Number Theory, such as divisibility networks or networks generated from Collatz's Conjecture. or Goldbach's Strong Conjecture. In Chapters 2 and 3, we show the results obtained and that have been published to date. Finally, in Chapter 4, we summarize the conclusions obtained and indicate some related problems that we consider of interest to address in the future.