Nuevas aproximaciones para reducir el consumo de antibióticos en animales de producción

  1. BRUNO GONZÁLEZ ZORN 1
  2. NATALIA MONTERO SERRA 1
  3. LUCA GUARDABASSI 2
  4. CARMEN ESPINOSA GÓNGORA 2
  1. 1 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

  2. 2 University of Copenhagen.
Revista:
Anales de la Real Academia de Ciencias Veterinarias

Año de publicación: 2020

Volumen: 28

Número: 28

Páginas: 287-341

Tipo: Artículo

Resumen

La resistencia a los antibióticos representa la mayor amenaza sa-nitaria actual a medio y largo plazo. Para luchar contra ella, actualmente seguimos desde todos los estamentos una aproximación One Health o Una Salud. Esto implica que, también desde la medicina veterinaria, de-bemos implicarnos en este grave problema, no solamente por su implica-ción directa en Sanidad Animal, sino también en salud pública y el medio ambiente. En esta línea, actualmente se están desarrollando distintas es-trategias asociadas a la nutrición animal, que permiten una menor utili-zación de antibióticos. En este trabajo exponemos las distintas estrategias abordadas por la UE en el marco del único proyecto de investigación europeo que aborda este problema directamente en la nutrición en la granja. AVANT, Alternatives to Veterinary Antimicrobials estudia tres aproximaciones fundamentales que presentamos y discutimos. El tipo de ganadería objeto es el porcino, debido a que, en España, este sector es responsable del 75% del consumo de antibióticos en animales. Las apro-ximaciones incluyen: el uso de prebióticos, el trasplante fecal, el uso de fagos, utilización de polímeros, los inmunomoduladores y las estrategias alimentarias. En este trabajo se exponen las ventajas e inconvenientes de cada una de ellas, se propone la estrategia a seguir para ensayarlas expe-rimentalmente, y posteriormente en pruebas de campo, y se plantean sus posibles implicaciones para la ganadería.

Referencias bibliográficas

  • Cassini Högberg LD, Plachouras D, Quattrocchi A, Hoxha A, Si-monsen GS, Colomb-Cotinat M, Kretzschmar ME, De-vleesschauwer B, Cecchini M, Ouakrim DA, Oliveira TC, Strue-lens MJ, Suetens C, Monnet DL; Burden of AMR Collaborative Group. 2019. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level mo-delling analysis. Lancet Infect Dis. 19(1):56-66.
  • World Bank. 2016. Drug-Resistant Infections: A Threat to Our Economic Future.
  • Van Boeckel TP, Glennon EE, Chen D, Gilbert M, Robinson TP, Grenfell BT, Levin SA, Bonhoeffer S, Laxminarayan R. 2017. Re-ducing antimicrobial use in food animals. Science. 357:1350-1352.
  • González-Zorn B, Escudero JA. 2012. Ecology of antimicrobial resistance: humans, animals, food and environment. Int Microbiol. 15:101-109.
  • Guardabassi L, Apley M, Olsen JE, Toutain PL, Weese S. 2018. Optimization of Antimicrobial Treatment to Minimize Resistance Selection. Micriobiol Spectr. 6(3).
  • European Surveillance of Veterinary Antimicrobial Consumption (ESVAC).
  • Graveland H, Duim B, van Duijkeren E, Heederik D, Wagenaar JA. 2011. Livestock-associated methicillin-resistant Staphylococ-cus aureus in animals and humans. Int J Med Microbiol. 301: 630-634
  • Moodley A, Nielsen SS, Guardabassi L. 2011. Effects of te-tracycline and zinc on selection of methicillin-resistant Staphyloo-coccus aureus (MRSA) sequence type 398 in pigs. Vet Micro-biol.152:420-423.
  • Kempf I, Jouy E, Chauvin C. 2016. Colistin use and colistin resis-tance in bacteria from animals. Int J Antimicrob Agents. 48: 598-606.
  • Hammerum AM, Larsen J, Andersen VD, Lester CH, Skovgaard Skytte TS, Hansen F, Olsen SS, Mordhorst H, Skov RL, Aarestrup FM, Agerso Y. 2014. Characterization of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli obtained from Da-nish pigs, pig farmers and their families from farms with high or no consumption of third- or fourth- generation cephalosporins. J Antimicrob Chemother.69:2650-2657.
  • De Briyne N, Atkinson J, Pokludová L, Borriello P, Price S. 2013. Factors influencing antibiotic prescribing habits and use of sensi-tivity testing amongst veterinarians in Europe. Vet Rec. 173: 475-475.
  • Jensen GM, Frydendahl K, Svendsen O, Jørgensen CB, Cirera S, Fredholm M, Nielsen JP, Møller K. 2006. Experimental infection with Escherichia coli 0149:F4ac in weaned piglets. Vet Microbiol. 115(1-3):243-249.
  • Guan X, Molist F, Bravo de Laguna F, Saornil D. 2017. Effect of the combination of three yeast strains on post weaning piglets after an experimental E. coli infection. Anim Prod Sci. 57:2497.
  • Magyar T, King VL, Kovács F. 2002. Evaluation of vaccines for atrophic rhinitis—a comparison of three challenge models. Vac-cine 20:1797-1802.
  • Molist F, Gomez de Segura A, Perez JF, Bhandri SK, Krause DO, Nayachoti CM. et al. 2010. Effect of wheat bran on the health and performance of weaned pigs challenged with Escherichia coli K88 Livest. Sci. 133:214-217.
  • Giang HH, Viet TQ, Ogle B, Lindberg JE. 2010. Growth perfor-mance, digestibility, gut environment and health status in weaned piglets fed a diet supplemented with potentially probiotic comple-xes of lactic acid bacteria. Livest. Sci. 129:95-103.
  • Davis ME, Parrott T, Brown DC, de Rodas BZ, Johnson ZB, Max-well CV, Rehberger T. 2008. Effect of Bacillus-based direct-fed microbial feed supplement on growth performance and pen cleaning characteristics of growing-finishing pigs. Sci J Anim Sci. 86:1459-1467.
  • Teruo Hayakawa, Tomohide Masuda, Daisuke Kurosawa, Taka-mitsu Tsukahara. 2016. Dietary administration of probiotics to sows and/or their neonates improves the reproductive perfor-mance, incidence of post-weaning diarrhea and histopathological parameters in the intestine of weaned piglets. Anim Sci J. 87:1501-1510.
  • Fuller R. 1989. Probiotics in man and animals. J Appl Microbiol. 66:365-378
  • Klose V, Bruckbeck R, Henikl S, Schatzmayr G, Loibner AP. 2010. Identification and antimicrobial susceptibility of porcine bacteria that inhibit the growth of Brachyspira hyodysenteriae in vitro. J Appl Microbiol. 108:1271-1280.
  • Sattler VA, Bayer K, Schatzmayr G, Haslberger AG, Klose V. 2015. Impact of a probiotic inulin, or their combination on the piglets microbiota at different intestinal locations. Benef. 6:473-483.
  • Liao SF, Nyachoti M. 2017. Using probiotics to improve swine gut health and nutrient utilization. Anim Nutr. 3:331-343.
  • Gianotti RJ, Moss AC. 2017. Fecal microbiota transplantation: from Clostridium difficile to inflammatory bowel disease. Gastro-enterol Hepatol. 13:209–213.
  • Brunse A, Martin L, Solbeck T, Christensen L, Skovsted M, Wiese M, Khakimov B, Pieper R, Sandris D, Sangild PT, Thymann T. 2018. Effect of fecal microbiota transplantation route of adminis-tration on gut colonization and host response in preterm pigs. ISME. 13:720-733.
  • Firdessa R, Good L, Amstalden MC, Chindera K, Fadhilah N, Ka-maruzzaman, Schultheis M, Röger B, Hecht N, Oelschlaeger TA, Meinel L, Lühmann T, Molll H. 2015. Pathogen -and host- direc-ted antileishmanial effects mediated by polyhexanide (PHMB). PLoS Negl Trop Dis. 9(10):e0004041.
  • Skurnik M, Strauch E. 2006. Phage therapy: facts and fiction. Int J Med Microbiol. 296:5–14.
  • Smith HW, Huggins MB. 1983. Effectiveness of phages in treating experimental Escherichia coli diarrhea in calves, piglets and lambs. J Gen Microbiol. 129:2659–2675.
  • Jamalludeen N, Johnson RP, Shewen PE, Gyles CL. 2009. Eva-luation of bacteriophages for prevention and treatment of diarrhea due to experimental enterotoxigenic Escherichia coli 0149 infec-tion of pigs. Vet Microbiol. 136:135–141.
  • Seung Bin Cha, An Na Yoo, Won Jung Lee, Min Kyoung Shin, Myung Hwan Jung, Seung Won Shin, Young Wook Cho, Han Sang Yoo. 2012. Effect of bacteriophage in enterotoxigenic Es-cherichia coli (ETEC) infected pigs. J Vet Med Sci. 74:1037–1039.
  • Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, Teillant A, Laxminarayan R. 2015. Global trends in antimicrobial use in food animals. PNAS 112:5649–5654.
  • Gilbert M, Conchedda G, Van Boeckel, Cinardi G, Linard C, Ni-colas G, Thanapongtharm W, Aietti LD, Wint W, Newman SH, Robinson TP. 2015. Income Disparities and the Global Distribu-tion of Intensively Farmed Chicken and Pigs. PloS One 10:e0133381.
  • https://op.europa.eu/en/publication-detail/-/publication/7656bd79-d970-11e7-a506-01aa75ed71a1/language-en.
  • Van Boeckel TP, Glennon EE, Chen D, Gilbert M, Robinson TP, Grenfell BT, Levin SA, Bonhoeffer S, Laxminarayan R. 2017. Re-ducing antimicrobial use in food animals. Science 357:1350–1352.
  • STAR-IDAZ: Proposal for the animal health and greenhouse gas emissions network. 2018.
  • Cogliani C. Goossens H, Greko C. 2011. Restricting Antimicro-bial use in food animals: lessons from Europe: banning nonessen-tial antibiotic uses in food animals is intended to reduce pools of resistance genes. Microbe J. 6, 274–279.
  • Van Boeckel TP, Glennon EE, Chen D., Gilbert M, Robinson TP, Grenfell BT, Levin SA, Bonhoeffer S, Laxminarayan R. 2017. Re-ducing antimicrobial use in food animals. Science 357: 1350–1352.
  • Sales of veterinary antimicrobial agents in 30 European countries in 2016 - Eighth ESVAC report.
  • Usage of Antibiotics in Agricultural Livestock in the Netherlands in 2017. Report Autoriteit.
  • OECD-FAO. Agricultural Outlook 2017-2026. DOI:10.1787/ agr_outlook-2017- en.
  • QYResearch. 2018. Global Direct-fed Microbials: Market Re- search Report.
  • Animal Health Europe. 2018. The European animal medicines industry in figures.
  • EMA 2018. Sales of veterinary antimicrobial agents in 30 Euro- pean countries in 2016.
  • EC 2016. Facts and figures on organic agriculture in the Euro- pean Union