Efecto del tratamiento antirretroviral combinado, sobre la activación /inflamación sistemática en los pacientes con infección VIH; Potencial efecto inmunomodulador de Maraviroc. Factores inmunológicos asociados

  1. Romero Sánchez, María Concepción
Dirigida por:
  1. Ezequiel Ruiz-Mateos Carmona Director/a
  2. Manuel Leal Noval Director/a

Universidad de defensa: Universidad de Sevilla

Fecha de defensa: 25 de junio de 2014

Tribunal:
  1. Luis Paz-Ares Rodríguez Presidente
  2. Antonio Carrillo-Vico Secretario/a
  3. Rafael Correa Rocha Vocal
  4. Alejandro Vallejo Tiller Vocal
  5. Berta Sánchez Sánchez Vocal

Tipo: Tesis

Teseo: 362438 DIALNET

Resumen

Los sujetos infectados por el virus de la inmunodeficiencia humana (VIH) que han sido tratados con terapia antirretroviral combinada (cART) han alcanzado una mayor esperanza de vida y supervivencia. Además este cART supresor de la viremia del VIH, mantenido durante un suficiente periodo de tiempo, ha logrado la normalización de las células T CD4+ en la mayoría de los pacientes y la reducción de la morbilidad y mortalidad asociada a SIDA, pero sin embargo no ha logrado descender la mortalidad no SIDA; en comparación con población general no infectada por el VIH. Además, el cART no es capaz de normalizar ciertos parámetros inmunológicos asociados a progresión de la enfermedad VIH. En la infección por VIH la activación inmune es un componente esencial de progresión de enfermedad. El origen de esta activación inmune persistente todavía no está claro. Se ha propuesto como potencial estímulo que causaría la activación inmunitaria el incremento de productos circulantes de origen microbiano durante la infección crónica por VIH, que reflejaría traslocación bacteriana desde el intestino. Varios parámetros se han usado indistintamente para determinar la traslocación bacteriana; los más comúnmente usados han sido lipopolisacáridos bacterianos (LPS) y CD14 soluble (CD14s). En la presente Tesis Doctoral, hemos analizado un tratamiento con Maraviroc (MVC), fármaco antagonista de CCR5. Durante un régimen consistente en la administración de MVC durante 8 días en monoterapia; hemos podido determinar los efectos específicos de un bloqueo del correceptor CCR5 en varios biomarcadores asociados a la progresión del VIH. En los pacientes que indetectabilizaron la carga viral durante esta monoterapia se observó un incremento en la activación y senescencia de células T CD8+, y un perfil más favorable en los niveles de dímero-D y CD14s. Después de 12 semanas bajo un cART que incluía MVC se incrementó significativamente el número absoluto de células T CD8+ y se preservaron los niveles de activación y senescencia CD4+ cuando se comparaban los pacientes bajo este régimen con un grupo control. Y de igual forma en un régimen que incluía MVC disminuyeron los niveles de CD14s cuando se comparó con un régimen sin MVC. Este trabajo se ha abordado en un manuscrito publicado como ¿Effect of maraviroc on HIV disease progression-related biomarkers¿ [MC. Romero-Sánchez, et al. Antimicrob Agents Chemother. 2012]. Ligando al anterior hallazgo, en la presente tesis doctoral hemos encontrado una asociación entre los niveles de virus con tropismo X4 y los niveles de activación de las células T CD4+. Esto ha supuesto un hallazgo importante en una laguna de conocimiento controvertida en la literatura, y esto datos animan a diseñar estrategias para la reducción de esta activación o fármacos tropismo-específicos y aumentar así el tiempo que los pacientes VIH+ se podrían beneficiar de MVC. Este objetivo se llevó a cabo en el estudio: ¿Asociación de un determinado tropismo vírico con las características inmunológicas en pacientes con infección VIH¿ [MC. Romero-Sánchez, et al, manuscrito en preparación, 2014]. Por otro lado, hemos comprobado en la presente tesis, que CD14s y LPS no marcan lo mismo, sino que CD14s refleja translocación bacteriana sólo cuando hay un débil estado inmunológico, y que además es CD14s el que más se relaciona con marcadores de progresión de la enfermedad; esto añade a nuestro primer estudio un valor más al efecto inmunodulador que se observa en el grupo que respondió a MVC y no en el grupo control; tanto en monoterapia como contenido en un cART a más largo pazo. Que conozcamos, sólo un estudio había descrito el efecto a largo plazo de un cART en los niveles de CD14s, pero las condiciones inmunovirológicas al inicio del cART de la población no se consideraron para este análisis, con los resultados obtenidos en otro trabajo abordado también en esta tesis, hemos demostrado que ni tras 5 años de tratamiento supresor se logra normalizar los valores de CD14s. Esto sugiere que puede haber un daño irreversible que estaría induciendo una activación persistente de monocitos tempranamente tras la infección. Ambos trabajos han sido publicados como ¿Different biological significance of sCD14 and LPS in HIV-infection: importance of the immunovirology stage and association with HIV-disease progression markers¿ [MC. Romero-Sánchez, et al. J Infect. 2012] y ¿Long-term suppressive combined antiretroviral treatment does not normalize the serum level of soluble CD14¿ [G. Méndez-Lagares, M.C. Romero-Sánchez, et al. J Infect Dis. 2012]. Finalmente, debido a los potenciales efectos beneficiosos de MVC hallados anteriormente, y porque un régimen antiretroviral sin análogos de nucleótidos podría evitar potenciales toxicidades, el escenario de pacientes infectados por VIH bajo cART con carga viral suprimida ha sido el ideal para probar el efecto de un cambio de régimen en biomarcadores de inflamación asociados a inflamación y progresión de la enfermedad VIH. Por ello en la presente tesis doctoral demostramos que el cambio es seguro y mantiene la supresión viral. Pero además se consigue tras 24 semanas una reducción en marcadores de inflamación. Hasta ahora esto no se había demostrado y abre una nueva ventana de oportunidad en la segunda era TARGA. Se sabe que el cART no es capaz de normalizar ciertos parámetros inmunes y que no reduce el riesgo de enfermedad no SIDA ; además nosotros hemos visto que normaliza CD14s ni tras 5 años, pero estos resultados apoyan el estudio de nuevas estrategias y terapias encaminadas a la reducción de estos parámetros. Esto se ha abordado en el manuscrito ¿Maintenance of virologic efficacy and decrease in levels of inflammatory markers after switching aviremic HIV-infected patients to an NRTI-sparing bitherapy¿ [MC. Romero-Sánchez, et al, manuscrito enviado en marzo de 2014]. Bibliografía: 1. Palella FJ, Jr., Delaney KM, Moorman AC, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med 1998; 338:853-60. 2. Vandamme AM, Van Vaerenbergh K, De Clercq E. Anti-human immunodeficiency virus drug combination strategies. Antivir Chem Chemother 1998; 9:187-203. 3. Hughes A, Barber T, Nelson M. New treatment options for HIV salvage patients: an overview of second generation PIs, NNRTIs, integrase inhibitors and CCR5 antagonists. J Infect 2008; 57:1-10. 4. Dorr P, Westby M, Dobbs S, et al. Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity. Antimicrob Agents Chemother 2005; 49:4721-32. 5. Berger EA, Murphy PM, Farber JM. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol 1999; 17:657-700. 6. Fatkenheuer G, Nelson M, Lazzarin A, et al. Subgroup analyses of maraviroc in previously treated R5 HIV-1 infection. N Engl J Med 2008; 359:1442-55. 7. Gulick RM, Lalezari J, Goodrich J, et al. Maraviroc for previously treated patients with R5 HIV-1 infection. N Engl J Med 2008; 359:1429-41. 8. Asmuth DM, Goodrich J, Cooper DA, et al. CD4+ T-cell restoration after 48 weeks in the maraviroc treatment-experienced trials MOTIVATE 1 and 2. J Acquir Immune Defic Syndr 2010; 54:394-7. 9. Cooper DA, Heera J, Goodrich J, et al. Maraviroc versus efavirenz, both in combination with zidovudine-lamivudine, for the treatment of antiretroviral-naive subjects with CCR5-tropic HIV-1 infection. J Infect Dis 2010; 201:803-13. 10. Saag M, Goodrich J, Fatkenheuer G, et al. A double-blind, placebo-controlled trial of maraviroc in treatment-experienced patients infected with non-R5 HIV-1. J Infect Dis 2009; 199:1638-47. 11. Funderburg N, Kalinowska M, Eason J, et al. Effects of maraviroc and efavirenz on markers of immune activation and inflammation and associations with CD4+ cell rises in HIV-infected patients. PLoS One 2010; 5:e13188. 12. Anton PA, Elliott J, Poles MA, et al. Enhanced levels of functional HIV-1 co-receptors on human mucosal T cells demonstrated using intestinal biopsy tissue. AIDS 2000; 14:1761-5. 13. Bacon KB, Premack BA, Gardner P, Schall TJ. Activation of dual T cell signaling pathways by the chemokine RANTES. Science 1995; 269:1727-30. 14. Madani N, Hubicki AM, Perdigoto AL, Springer M, Sodroski J. Inhibition of human immunodeficiency virus envelope glycoprotein- mediated single cell lysis by low-molecular-weight antagonists of viral entry. J Virol 2007; 81:532-8. 15. Ruiz-Mateos E, Gonzalez-Serna A, Genebat M, et al. Virological response after short-term CCR5 antagonist exposure in HIV-infected patients: frequency of subjects with virological response and associated factors. Antimicrob Agents Chemother 2011; 55:4664-9. 16. Raymond S, Delobel P, Mavigner M, et al. CXCR4-using viruses in plasma and peripheral blood mononuclear cells during primary HIV-1 infection and impact on disease progression. AIDS 2010; 24:2305-12. 17. Koot M, Keet IP, Vos AH, et al. Prognostic value of HIV-1 syncytium-inducing phenotype for rate of CD4+ cell depletion and progression to AIDS. Ann Intern Med 1993; 118:681-8. 18. Hunt PW, Harrigan PR, Huang W, et al. Prevalence of CXCR4 tropism among antiretroviral-treated HIV-1-infected patients with detectable viremia. J Infect Dis 2006; 194:926-30. 19. Hogg R LV, Sterne JA, et al. Life expectancy of individuals on combination antiretroviral therapy in high-income countries: a collaborative analysis of 14 cohort studies. Lancet 2008; 372:293-9. 20. Mocroft A, Phillips AN, Gatell J, et al. Normalisation of CD4 counts in patients with HIV-1 infection and maximum virological suppression who are taking combination antiretroviral therapy: an observational cohort study. Lancet 2007; 370:407-13. 21. Lewden C, Bouteloup V, De Wit S, et al. All-cause mortality in treated HIV-infected adults with CD4 >/=500/mm3 compared with the general population: evidence from a large European observational cohort collaboration. Int J Epidemiol 2012; 41:433-45. 22. Kuller LH, Tracy R, Belloso W, et al. Inflammatory and coagulation biomarkers and mortality in patients with HIV infection. PLoS Med 2008; 5:e203. 23. Deeks SG, Kitchen CM, Liu L, et al. Immune activation set point during early HIV infection predicts subsequent CD4+ T-cell changes independent of viral load. Blood 2004; 104:942-7. 24. Hellerstein M, Hanley MB, Cesar D, et al. Directly measured kinetics of circulating T lymphocytes in normal and HIV-1-infected humans. Nat Med 1999; 5:83-9. 25. Hazenberg MD, Stuart JW, Otto SA, et al. T-cell division in human immunodeficiency virus (HIV)-1 infection is mainly due to immune activation: a longitudinal analysis in patients before and during highly active antiretroviral therapy (HAART). Blood 2000; 95:249-55. 26. Valdez H, Lederman MM. Cytokines and cytokine therapies in HIV infection. AIDS Clin Rev 1997:187-228. 27. Giorgi JV, Hultin LE, McKeating JA, et al. Shorter survival in advanced human immunodeficiency virus type 1 infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine coreceptor usage. J Infect Dis 1999; 179:859-70. 28. Deeks SG, Walker BD. The immune response to AIDS virus infection: good, bad, or both? J Clin Invest 2004; 113:808-10. 29. Wilson CM, Ellenberg JH, Douglas SD, Moscicki AB, Holland CA. CD8+CD38+ T cells but not HIV type 1 RNA viral load predict CD4+ T cell loss in a predominantly minority female HIV+ adolescent population. AIDS Res Hum Retroviruses 2004; 20:263-9. 30. Hunt PW, Martin JN, Sinclair E, et al. T cell activation is associated with lower CD4+ T cell gains in human immunodeficiency virus-infected patients with sustained viral suppression during antiretroviral therapy. J Infect Dis 2003; 187:1534-43. 31. Brenchley JM, Price DA, Schacker TW, et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med 2006; 12:1365-71. 32. Jiang W, Lederman MM, Hunt P, et al. Plasma levels of bacterial DNA correlate with immune activation and the magnitude of immune restoration in persons with antiretroviral-treated HIV infection. J Infect Dis 2009; 199:1177-85. 33. Rodriguez B, Sethi AK, Cheruvu VK, et al. Predictive value of plasma HIV RNA level on rate of CD4 T-cell decline in untreated HIV infection. JAMA 2006; 296:1498-506. 34. Sandler NG, Wand H, Roque A, et al. Plasma levels of soluble CD14 independently predict mortality in HIV infection. J Infect Dis 2011; 203:780-90. 35. Nockher WA, Bergmann L, Scherberich JE. Increased soluble CD14 serum levels and altered CD14 expression of peripheral blood monocytes in HIV-infected patients. Clin Exp Immunol 1994; 98:369-74. 36. Pugin J, Schurer-Maly CC, Leturcq D, Moriarty A, Ulevitch RJ, Tobias PS. Lipopolysaccharide activation of human endothelial and epithelial cells is mediated by lipopolysaccharide-binding protein and soluble CD14. Proc Natl Acad Sci U S A 1993; 90:2744-8. 37. Rajasuriar R, Booth D, Solomon A, et al. Biological determinants of immune reconstitution in HIV-infected patients receiving antiretroviral therapy: the role of interleukin 7 and interleukin 7 receptor alpha and microbial translocation. J Infect Dis 2010; 202:1254-64. 38. Marchetti G, Cozzi-Lepri A, Merlini E, et al. Microbial translocation predicts disease progression of HIV-infected antiretroviral-naive patients with high CD4+ cell count. AIDS 2011; 25:1385-94. 39. Lien E, Aukrust P, Sundan A, Muller F, Froland SS, Espevik T. Elevated levels of serum-soluble CD14 in human immunodeficiency virus type 1 (HIV-1) infection: correlation to disease progression and clinical events. Blood 1998; 92:2084-92. 40. Eller MA, Blom KG, Gonzalez VD, et al. Innate and adaptive immune responses both contribute to pathological CD4 T cell activation in HIV-1 infected Ugandans. PLoS One 2011; 6:e18779. 41. Wallet MA, Rodriguez CA, Yin L, et al. Microbial translocation induces persistent macrophage activation unrelated to HIV-1 levels or T-cell activation following therapy. AIDS 2010; 24:1281-90. 42. Merlini E, Bai F, Bellistri GM, Tincati C, d'Arminio Monforte A, Marchetti G. Evidence for polymicrobic flora translocating in peripheral blood of HIV-infected patients with poor immune response to antiretroviral therapy. PLoS One 2011; 6:e18580. 43. Walker UA, Setzer B, Venhoff N. Increased long-term mitochondrial toxicity in combinations of nucleoside analogue reverse-transcriptase inhibitors. AIDS 2002; 16:2165-73. 44. Leeansyah E, Cameron PU, Solomon A, et al. Inhibition of telomerase activity by human immunodeficiency virus (HIV) nucleos(t)ide reverse transcriptase inhibitors: a potential factor contributing to HIV-associated accelerated aging. J Infect Dis 2013; 207:1157-65. 45. Zimmermann AE, Pizzoferrato T, Bedford J, Morris A, Hoffman R, Braden G. Tenofovir-associated acute and chronic kidney disease: a case of multiple drug interactions. Clin Infect Dis 2006; 42:283-90. 46. Goicoechea M, Liu S, Best B, et al. Greater tenofovir-associated renal function decline with protease inhibitor-based versus nonnucleoside reverse-transcriptase inhibitor-based therapy. J Infect Dis 2008; 197:102-8. 47. Sabin CA, Worm SW, Weber R, et al. Use of nucleoside reverse transcriptase inhibitors and risk of myocardial infarction in HIV-infected patients enrolled in the D:A:D study: a multi-cohort collaboration. Lancet 2008; 371:1417-26. 48. Friis-Moller N, Reiss P, Sabin CA, et al. Class of antiretroviral drugs and the risk of myocardial infarction. N Engl J Med 2007; 356:1723-35. 49. Van Dyke RB, Wang L, Williams PL. Toxicities associated with dual nucleoside reverse-transcriptase inhibitor regimens in HIV-infected children. J Infect Dis 2008; 198:1599-608. 50. Hulgan T, Hughes M, Sun X, et al. Oxidant stress and peripheral neuropathy during antiretroviral therapy: an AIDS clinical trials group study. J Acquir Immune Defic Syndr 2006; 42:450-4. 51. St Clair MH, Richards CA, Spector T, et al. 3'-Azido-3'-deoxythymidine triphosphate as an inhibitor and substrate of purified human immunodeficiency virus reverse transcriptase. Antimicrob Agents Chemother 1987; 31:1972-7. 52. Bodnar AG, Ouellette M, Frolkis M, et al. Extension of life-span by introduction of telomerase into normal human cells. Science 1998; 279:349-52. 53. Harley CB, Vaziri H, Counter CM, Allsopp RC. The telomere hypothesis of cellular aging. Exp Gerontol 1992; 27:375-82. 54. Ferrando-Martinez S, Ruiz-Mateos E, Romero-Sanchez MC, et al. HIV infection-related premature immunosenescence: high rates of immune exhaustion after short time of infection. Curr HIV Res 2011; 9:289-94. 55. Chou JP, Effros RB. T cell replicative senescence in human aging. Curr Pharm Des 2013; 19:1680-98. 56. Deeks SG, Verdin E, McCune JM. Immunosenescence and HIV. Curr Opin Immunol 2012; 24:501-6. 57. De Pablo C, Orden S, Apostolova N, Blanquer A, Esplugues JV, Alvarez A. Abacavir and didanosine induce the interaction between human leukocytes and endothelial cells through Mac-1 upregulation. AIDS 2010; 24:1259-66. 58. Dragic T, Litwin V, Allaway GP, et al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 1996; 381:667-73. 59. Feng Y, Broder CC, Kennedy PE, Berger EA. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 1996; 272:872-7. 60. Berger EA, Doms RW, Fenyo EM, et al. A new classification for HIV-1. Nature 1998; 391:240. 61. Schuitemaker H, Koot M, Kootstra NA, et al. Biological phenotype of human immunodeficiency virus type 1 clones at different stages of infection: progression of disease is associated with a shift from monocytotropic to T-cell-tropic virus population. J Virol 1992; 66:1354-60. 62. Richman DD, Bozzette SA. The impact of the syncytium-inducing phenotype of human immunodeficiency virus on disease progression. J Infect Dis 1994; 169:968-74. 63. Fiser AL, Vincent T, Brieu N, et al. High CD4(+) T-cell surface CXCR4 density as a risk factor for R5 to X4 switch in the course of HIV-1 infection. J Acquir Immune Defic Syndr 2010; 55:529-35. 64. Gonzalez-Serna A, Leal M, Genebat M, et al. TROCAI (tropism coreceptor assay information): a new phenotypic tropism test and its correlation with Trofile enhanced sensitivity and genotypic approaches. J Clin Microbiol 2010; 48:4453-8. 65. Gonzalez-Serna A, Romero-Sanchez MC, Ferrando-Martinez S, et al. HIV-1 tropism evolution after short-term maraviroc monotherapy in HIV-1-infected patients. Antimicrob Agents Chemother 2012; 56:3981-3. 66. Hailman E, Vasselon T, Kelley M, et al. Stimulation of macrophages and neutrophils by complexes of lipopolysaccharide and soluble CD14. J Immunol 1996; 156:4384-90. 67. Pelsers MM, Namiot Z, Kisielewski W, et al. Intestinal-type and liver-type fatty acid-binding protein in the intestine. Tissue distribution and clinical utility. Clin Biochem 2003; 36:529-35. 68. Galan I, Jimenez JL, Gonzalez-Rivera M, et al. Virological phenotype switches under salvage therapy with lopinavir-ritonavir in heavily pretreated HIV-1 vertically infected children. AIDS 2004; 18:247-55. 69. Equils O, Garratty E, Wei LS, et al. Recovery of replication-competent virus from CD4 T cell reservoirs and change in coreceptor use in human immunodeficiency virus type 1-infected children responding to highly active antiretroviral therapy. J Infect Dis 2000; 182:751-7. 70. Sarmati L, Parisi SG, Andreoni C, et al. Switching of inferred tropism caused by HIV during interruption of antiretroviral therapy. J Clin Microbiol 2010; 48:2586-8. 71. Delobel P, Sandres-Saune K, Cazabat M, et al. R5 to X4 switch of the predominant HIV-1 population in cellular reservoirs during effective highly active antiretroviral therapy. J Acquir Immune Defic Syndr 2005; 38:382-92. 72. Briz V, Poveda E, del Mar Gonzalez M, Martin-Carbonero L, Gonzalez-Gonzalez R, Soriano V. Impact of antiretroviral therapy on viral tropism in HIV-infected patients followed longitudinally for over 5 years. J Antimicrob Chemother 2008; 61:405-10. 73. Ancuta P, Kamat A, Kunstman KJ, et al. Microbial translocation is associated with increased monocyte activation and dementia in AIDS patients. PLoS One 2008; 3:e2516. 74. Sun J, Zheng JH, Zhao M, Lee S, Goldstein H. Increased in vivo activation of microglia and astrocytes in the brains of mice transgenic for an infectious R5 human immunodeficiency virus type 1 provirus and for CD4-specific expression of human cyclin T1 in response to stimulation by lipopolysaccharides. J Virol 2008; 82:5562-72. 75. Wang H, Sun J, Goldstein H. Human immunodeficiency virus type 1 infection increases the in vivo capacity of peripheral monocytes to cross the blood-brain barrier into the brain and the in vivo sensitivity of the blood-brain barrier to disruption by lipopolysaccharide. J Virol 2008; 82:7591-600. 76. Funderburg NT, Mayne E, Sieg SF, et al. Increased tissue factor expression on circulating monocytes in chronic HIV infection: relationship to in vivo coagulation and immune activation. Blood 2010; 115:161-7. 77. Mullerat J, Perrett CW, Deroide F, Winslet MC, Bofill M, Poulters LW. The role of macrophages in angiogenesis. Comparison between HIV+ and HIV- populations with anal dysplasia and anal cancer. Anticancer Res 2005; 25:693-9. 78. Genebat M, Ruiz-Mateos E, Leon JA, et al. Correlation between the Trofile test and virological response to a short-term maraviroc exposure in HIV-infected patients. J Antimicrob Chemother 2009; 64:845-9. 79. Zoufaly A, Cozzi-Lepri A, Reekie J, et al. Immuno-virological discordance and the risk of non-AIDS and AIDS events in a large observational cohort of HIV-patients in Europe. PLoS One 2014; 9:e87160. 80. Hamlyn E, Hickling S, Porter K, et al. Increased levels of CD4 T-cell activation in individuals with CXCR4 using viruses in primary HIV-1 infection. AIDS 2012; 26:887-90.