A retrial model in a nonstationary regime
-
1
Universidad Complutense de Madrid
info
ISSN: 1134-5764, 1863-8279
Año de publicación: 1996
Volumen: 4
Número: 1
Páginas: 121-133
Tipo: Artículo
Otras publicaciones en: Top
Resumen
In this article we analyze a retrial queuing system where customers in the orbit join a queue with FCFS discipline. We adopt a nonstationary regime. We derive some probabilities using the theory of semiregenerative processes. We obtain an integral estimation for the difference between blocking probabilities in stationary and nonstationary regimes.
Referencias bibliográficas
- Çinlar, E. (1975). Introduction to stochastic processes, Prentice-Hall.
- Choi, B.D., K.H. Rhee and K.K. Park (1993). TheM/G/1 retrial queue with retrial rate control policy. Probability in the Engineering and Informational Sciences7, 29–46.
- Falin, G.I. (1990). A survey of retrial queues. Queueing Systems7, 127–168.
- Farahmand, K. (1990). Single line queue with repeated demands. Queueing Systems6, 223–228.
- Fayolle, G. (1986). A simple exchange with delayed feedbacks, in:Teletraffic Analysis and Computer Performance Evaluation, O.J. Boxma, J.W. Cohen, H.C. Tijms, eds. (North-holland, Amsterdam).
- Neuts, M.F. (1989). Structured stochastic matrices ofM/G/1 type and their applications, Marcel Dekker.
- Yang, T. and J.G.C. Templeton (1987). A survey on retrial queues. Queueing Systems2, 203–233.