A retrial model in a nonstationary regime

  1. Vázquez, M. 1
  1. 1 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

Revista:
Top

ISSN: 1134-5764 1863-8279

Año de publicación: 1996

Volumen: 4

Número: 1

Páginas: 121-133

Tipo: Artículo

DOI: 10.1007/BF02568607 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Top

Objetivos de desarrollo sostenible

Resumen

In this article we analyze a retrial queuing system where customers in the orbit join a queue with FCFS discipline. We adopt a nonstationary regime. We derive some probabilities using the theory of semiregenerative processes. We obtain an integral estimation for the difference between blocking probabilities in stationary and nonstationary regimes.

Referencias bibliográficas

  • Çinlar, E. (1975). Introduction to stochastic processes, Prentice-Hall.
  • Choi, B.D., K.H. Rhee and K.K. Park (1993). TheM/G/1 retrial queue with retrial rate control policy. Probability in the Engineering and Informational Sciences7, 29–46.
  • Falin, G.I. (1990). A survey of retrial queues. Queueing Systems7, 127–168.
  • Farahmand, K. (1990). Single line queue with repeated demands. Queueing Systems6, 223–228.
  • Fayolle, G. (1986). A simple exchange with delayed feedbacks, in:Teletraffic Analysis and Computer Performance Evaluation, O.J. Boxma, J.W. Cohen, H.C. Tijms, eds. (North-holland, Amsterdam).
  • Neuts, M.F. (1989). Structured stochastic matrices ofM/G/1 type and their applications, Marcel Dekker.
  • Yang, T. and J.G.C. Templeton (1987). A survey on retrial queues. Queueing Systems2, 203–233.