Increasing the Depth of a Land Surface Model. Part II: Temperature Sensitivity to Improved Subsurface Thermodynamics and Associated Permafrost Response

  1. Steinert N.J. 1
  2. J. F. González-Rouco 1
  3. De Vrese P.
  4. E. García-Bustamante 1
  5. Hagemann, S.
  6. Melo-Aguilar C. 1
  7. Jungclaus, J.H.
  8. Lorenz, S.J.
  1. 1 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

Revista:
Journal of Hydrometeorology

ISSN: 1525-755X 1525-7541

Año de publicación: 2021

Volumen: 22

Número: 12

Páginas: 3231-3254

Tipo: Artículo

DOI: 10.1175/JHM-D-21-0023.1 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Journal of Hydrometeorology

Información de financiación

Financiadores

Referencias bibliográficas

  • Cuesta-Valero, (2016), Geophys. Res. Lett., 43, pp. 2016GL068496, 10.1002/2016GL068496
  • Giorgetta, (2013a), The atmospheric general circulation model ECHAM6: Model description.
  • Stieglitz, (2003), Geophys. Res. Lett., 30, 10.1029/2003GL017337
  • Schuur, (2008), BioScience, 58, pp. 701, 10.1641/B580807
  • Hillel, (1998), Environmental Soil Physics., pp. 800
  • Romanovsky, (2010), Permafrost Periglacial Processes, 21, pp. 106, 10.1002/ppp.689
  • Johansen, (1977), CRREL Tech. Rep. CRREL-TL-637, pp. 291
  • Roesch, (2001), Climate Dyn., 17, pp. 933, 10.1007/s003820100153
  • Taylor, (2012), Bull. Amer. Meteor. Soc., 93, pp. 485, 10.1175/BAMS-D-11-00094.1
  • Jorgenson, (2001), Climatic Change, 48, pp. 551, 10.1023/A:1005667424292
  • Wang, (2016), Geosci. Model Dev., 9, pp. 363, 10.5194/gmd-9-363-2016
  • Nepstad, (1994), Nature, 372, pp. 666, 10.1038/372666a0
  • Burke, (2020), Cryosphere, 14, pp. 3155, 10.5194/tc-14-3155-2020
  • Stocker, (2013), Climate Change 2013: The Physical Science Basis, pp. 33
  • Seneviratne, (2010), Earth-Sci. Rev., 99, pp. 125, 10.1016/j.earscirev.2010.02.004
  • Goll, (2015), Global Biogeochem. Cycles, 29, pp. 1511, 10.1002/2014GB004988
  • Hong, (2009), J. Geophys. Res., 114, pp. D18118, 10.1029/2008JD011249
  • Chadburn, (2017), Nat. Climate Change, 7, pp. 340, 10.1038/nclimate3262
  • Smerdon, (2004), J. Geophys. Res., 109, pp. D21107, 10.1029/2004JD005056
  • Abu-Hamdeh, (2000), Soil. Sci. Soc. Amer. J., 64, pp. 1285, 10.2136/sssaj2000.6441285x
  • Comyn-Platt, (2018), Nat. Geosci., 11, pp. 568, 10.1038/s41561-018-0174-9
  • Voigt, (2017), Proc. Natl. Acad. Sci. USA, 114, pp. 6238, 10.1073/pnas.1702902114
  • Romanovsky, (2010), Permafrost Periglacial Processes, 21, pp. 106, 10.1002/ppp.689
  • Stevens, (2007), Geophys. Res. Lett., 34, pp. L02702, 10.1029/2006GL028546
  • Swenson, (2012), J. Adv. Model. Earth Syst., 4, pp. M08002, 10.1029/2012MS000165
  • Stieglitz, (2007), J. Climate, 20, pp. 21, 10.1175/JCLI3982.1
  • Sun, (2004), Adv. Atmos. Sci., 21, pp. 868, 10.1007/BF02915589
  • Lawrence, (2005), Geophys. Res. Lett., 32, pp. L24401, 10.1029/2005GL025080
  • Giorgetta, (2013b), J. Adv. Model. Earth Syst., 5, pp. 572, 10.1002/jame.20038
  • Guillevic, (2002), J. Hydrometeor., 3, pp. 617, 10.1175/1525-7541(2002)003<0617:IOTIVO>2.0.CO;2
  • Chadburn, (2017), Nat. Climate Change, 7, pp. 340, 10.1038/nclimate3262
  • Bonan, (1995), Remote Sens. Environ., 51, pp. 57, 10.1016/0034-4257(94)00065-U
  • Bartlett, (2004), J. Geophys. Res., 109, pp. F04008, 10.1029/2004JF000224
  • Tarnocai, (2009), Global Biogeochem. Cycles, 23, pp. GB2023, 10.1029/2008GB003327
  • van Vuuren, (2011), Climatic Change, 109, pp. 5, 10.1007/s10584-011-0148-z
  • Gruber, (2012), Cryosphere, 6, pp. 221, 10.5194/tc-6-221-2012
  • Dunne, (1996), Int. J. Climatol., 16, pp. 841, 10.1002/(SICI)1097-0088(199608)16:8<841::AID-JOC60>3.0.CO;2-8
  • Jorgenson, (2001), Climatic Change, 48, pp. 551, 10.1023/A:1005667424292
  • Stieglitz, (2007), J. Climate, 20, pp. 21, 10.1175/JCLI3982.1
  • von Schuckmann, (2020), Earth Syst. Sci. Data, 12, pp. 2013, 10.5194/essd-12-2013-2020
  • Jaeger, (2011), Climate Dyn., 36, pp. 1919, 10.1007/s00382-010-0780-8
  • Melo-Aguilar, (2018), Climate Past, 14, pp. 1583, 10.5194/cp-14-1583-2018
  • Loranty, (2018), Biogeosciences, 15, pp. 5287, 10.5194/bg-15-5287-2018
  • Stieglitz, (2003), Geophys. Res. Lett., 30, 10.1029/2003GL017337
  • Essery, (2020), Cryosphere, 14, pp. 4687, 10.5194/tc-14-4687-2020
  • García-García, (2019), J. Geophys. Res. Atmos., 124, pp. 3903, 10.1029/2018JD030117
  • Bonan, (2015), Ecological Climatology: Concepts and Applications., pp. 754
  • Stocker, (2013), Climate Change 2013: The Physical Science Basis, pp. 33
  • Turcotte, (2014), Geodynamics., pp. 636, 10.1017/CBO9780511843877
  • Paquin, (2015), Climate Dyn., 44, pp. 203, 10.1007/s00382-014-2185-6
  • Sentman, (2011), Earth Interact., 15, 10.1175/2011EI401.1
  • Flato, (2013), Climate Change 2013: The Physical Science Basis, pp. 741
  • Sun, (2004), Adv. Atmos. Sci., 21, pp. 868, 10.1007/BF02915589
  • Roesch, (2001), Climate Dyn., 17, pp. 933, 10.1007/s003820100153
  • Pollack, (2000), Annu. Rev. Earth Planet. Sci., 28, pp. 339, 10.1146/annurev.earth.28.1.339
  • Anisimov, (2010), The main natural and socio-economic consequences of climate change in permafrost areas: A forecast based upon a synthesis of observations and modelling., pp. 39
  • Jungclaus, (2013), J. Adv. Model. Earth Syst., 5, pp. 422, 10.1002/jame.20023
  • Sapriza-Azuri, (2018), Hydrol. Earth Syst. Sci., 22, pp. 3295, 10.5194/hess-22-3295-2018
  • Menard, (2021), Bull. Amer. Meteor. Soc., 102, pp. E61, 10.1175/BAMS-D-19-0329.1
  • Mendoza, (2015), Water Resour. Res., 51, pp. 716, 10.1002/2014WR015820
  • Swenson, (2012), J. Adv. Model. Earth Syst., 4, pp. M08002, 10.1029/2012MS000165
  • Zhang, (2008), Polar Geogr., 31, pp. 47, 10.1080/10889370802175895
  • MacDougall, (2015), Environ. Res. Lett., 10, pp. 125003, 10.1088/1748-9326/10/12/125003
  • Gruber, (2012), Cryosphere, 6, pp. 221, 10.5194/tc-6-221-2012
  • Goll, (2015), Global Biogeochem. Cycles, 29, pp. 1511, 10.1002/2014GB004988
  • Nepstad, (1994), Nature, 372, pp. 666, 10.1038/372666a0
  • Hagemann, (2013), J. Adv. Model. Earth Syst., 5, pp. 259, 10.1029/2012MS000173
  • Mareschal, (1992), Climate Dyn., 6, pp. 135, 10.1007/BF00193525
  • de Vrese, (2018), Earth Syst. Dyn., 9, pp. 393, 10.5194/esd-9-393-2018
  • Seneviratne, (2008), Climate Variability and Extremes during the Past 100 Years, Advances in Global Change Research, Vol. 33, pp. 179, 10.1007/978-1-4020-6766-2_12
  • Turcotte, (2014), Geodynamics., pp. 636, 10.1017/CBO9780511843877
  • Heimann, (2008), Nature, 451, pp. 289, 10.1038/nature06591
  • Giorgetta, (2013a), The atmospheric general circulation model ECHAM6: Model description.
  • García-García, (2019), J. Geophys. Res. Atmos., 124, pp. 3903, 10.1029/2018JD030117
  • Jungclaus, (2013), J. Adv. Model. Earth Syst., 5, pp. 422, 10.1002/jame.20023
  • Stevens, (2013), J. Adv. Model. Earth Syst., 5, pp. 146, 10.1002/jame.20015
  • Smerdon, (2004), J. Geophys. Res., 109, pp. D21107, 10.1029/2004JD005056
  • Froese, (2008), Science, 321, pp. 1648, 10.1126/science.1157525
  • Sapriza-Azuri, (2018), Hydrol. Earth Syst. Sci., 22, pp. 3295, 10.5194/hess-22-3295-2018
  • Levitus, (2012), Geophys. Res. Lett., 39, pp. L10603
  • Mauritsen, (2019), J. Adv. Model. Earth Syst., 11, pp. 998, 10.1029/2018MS001400
  • Ekici, (2014), Geosci. Model Dev., 7, pp. 631, 10.5194/gmd-7-631-2014
  • Nicolsky, (2007), Geophys. Res. Lett., 34, pp. L08501, 10.1029/2007GL029525
  • Mendoza, (2015), Water Resour. Res., 51, pp. 716, 10.1002/2014WR015820
  • Dickinson, (1995a), Rev. Geophys., 33, pp. 917, 10.1029/95RG00284
  • Stevens, (2007), Geophys. Res. Lett., 34, pp. L02702, 10.1029/2006GL028546
  • Carslaw, (1959), Conduction of Heat in Solids., pp. 510
  • Scholze, (2003), Holocene, 13, pp. 327, 10.1191/0959683603hl625rp
  • Carson, (1963), J. Appl. Meteor., 2, pp. 397, 10.1175/1520-0450(1963)002<0397:TAADHE>2.0.CO;2
  • Jackson, (1986), Methods of Soil Analysis: Part 1-Physical and Mineralogical Methods, pp. 945
  • Dunne, (1996), Int. J. Climatol., 16, pp. 841, 10.1002/(SICI)1097-0088(199608)16:8<841::AID-JOC60>3.0.CO;2-8
  • Lynch-Stieglitz, (1994), J. Climate, 7, pp. 1842, 10.1175/1520-0442(1994)007<1842:TDAVOA>2.0.CO;2
  • Biskaborn, (2019), Nat. Commun., 10, pp. 264, 10.1038/s41467-018-08240-4
  • Kleidon, (1998), Global Change Biol., 4, pp. 275, 10.1046/j.1365-2486.1998.00152.x
  • Slater, (2013), J. Climate, 26, pp. 5608, 10.1175/JCLI-D-12-00341.1
  • González-Rouco, (2021), J. Hydrometeor., 22, pp. 3211, 10.1175/JHM-D-21-0024.1
  • Hagemann, (2015), Climate Dyn., 44, pp. 1731, 10.1007/s00382-014-2221-6
  • Giorgetta, (2013b), J. Adv. Model. Earth Syst., 5, pp. 572, 10.1002/jame.20038
  • Seneviratne, (2006), J. Hydrometeor., 7, pp. 1090, 10.1175/JHM533.1
  • de Vrese, (2018), Earth Syst. Dyn., 9, pp. 393, 10.5194/esd-9-393-2018
  • Sorour, (1990), Int. Commun. Heat Mass Transfer, 17, pp. 189, 10.1016/0735-1933(90)90053-M
  • Flato, (2013), Climate Change 2013: The Physical Science Basis, pp. 741
  • Schuur, (2015), Nature, 520, pp. 171, 10.1038/nature14338
  • Dickinson, (1995b), Remote Sens. Environ., 51, pp. 27, 10.1016/0034-4257(94)00062-R
  • Jaeger, (2011), Climate Dyn., 36, pp. 1919, 10.1007/s00382-010-0780-8
  • Beltrami, (2003), Global Planet. Change, 38, pp. 291, 10.1016/S0921-8181(03)00112-7
  • Stevens, (2013), J. Adv. Model. Earth Syst., 5, pp. 146, 10.1002/jame.20015
  • Guo, (2006), J. Hydrometeor., 7, pp. 611, 10.1175/JHM511.1
  • Taylor, (2012), Bull. Amer. Meteor. Soc., 93, pp. 485, 10.1175/BAMS-D-11-00094.1
  • Lynch-Stieglitz, (1994), J. Climate, 7, pp. 1842, 10.1175/1520-0442(1994)007<1842:TDAVOA>2.0.CO;2
  • Sorour, (1990), Int. Commun. Heat Mass Transfer, 17, pp. 189, 10.1016/0735-1933(90)90053-M
  • Scholze, (2003), Holocene, 13, pp. 327, 10.1191/0959683603hl625rp
  • Koster, (2004), Science, 305, pp. 1138, 10.1126/science.1100217
  • Reick, (2021), Tech. Rep., pp. 240
  • Andresen, (2020), Cryosphere, 14, pp. 445, 10.5194/tc-14-445-2020
  • Hagemann, (2013), J. Adv. Model. Earth Syst., 5, pp. 259, 10.1029/2012MS000173
  • Bartlett, (2005), J. Geophys. Res., 110, pp. F03008, 10.1029/2005JF000293
  • Koster, (2006), J. Hydrometeor., 7, pp. 590, 10.1175/JHM510.1
  • Abbott, (2015), Global Change Biol., 21, pp. 4570, 10.1111/gcb.13069
  • Anisimov, (2010), The main natural and socio-economic consequences of climate change in permafrost areas: A forecast based upon a synthesis of observations and modelling., pp. 39
  • Koven, (2013), J. Climate, 26, pp. 1877, 10.1175/JCLI-D-12-00228.1
  • Koster, (2006), J. Hydrometeor., 7, pp. 590, 10.1175/JHM510.1
  • Dirmeyer, (2009), J. Hydrometeor., 10, pp. 278, 10.1175/2008JHM1016.1
  • Essery, (2020), Cryosphere, 14, pp. 4687, 10.5194/tc-14-4687-2020
  • Ekici, (2015), Cryosphere, 9, pp. 1343, 10.5194/tc-9-1343-2015
  • Soong, (2020), Biogeosciences, 125, pp. e2019JG005266
  • Hermoso de Mendoza, (2020), Geosci. Model Dev., 13, pp. 1663, 10.5194/gmd-13-1663-2020
  • Rempel, (2016), Geosciences, 6, pp. 38, 10.3390/geosciences6030038
  • Bonan, (2015), Ecological Climatology: Concepts and Applications., pp. 754
  • Tarnocai, (2009), Global Biogeochem. Cycles, 23, pp. GB2023, 10.1029/2008GB003327
  • Niu, (2006), J. Hydrometeor., 7, pp. 937, 10.1175/JHM538.1
  • Carson, (1963), J. Appl. Meteor., 2, pp. 397, 10.1175/1520-0450(1963)002<0397:TAADHE>2.0.CO;2
  • Abbott, (2015), Global Change Biol., 21, pp. 4570, 10.1111/gcb.13069
  • Delworth, (1988), J. Climate, 1, pp. 523, 10.1175/1520-0442(1988)001<0523:TIOPEO>2.0.CO;2
  • Berner, (2020), Nat. Commun., 11, pp. 4621, 10.1038/s41467-020-18479-5
  • Koven, (2013), J. Climate, 26, pp. 1877, 10.1175/JCLI-D-12-00228.1
  • Ekici, (2014), Geosci. Model Dev., 7, pp. 631, 10.5194/gmd-7-631-2014
  • Slater, (2017), Cryosphere, 11, pp. 989, 10.5194/tc-11-989-2017
  • Reick, (2021), Tech. Rep., pp. 240
  • Mareschal, (1992), Climate Dyn., 6, pp. 135, 10.1007/BF00193525
  • Slater, (2017), Cryosphere, 11, pp. 989, 10.5194/tc-11-989-2017
  • Johansen, (1977), CRREL Tech. Rep. CRREL-TL-637, pp. 291
  • Voigt, (2017), Proc. Natl. Acad. Sci. USA, 114, pp. 6238, 10.1073/pnas.1702902114
  • Manabe, (1980), J. Geophys. Res., 85, pp. 5529, 10.1029/JC085iC10p05529
  • Jackson, (1986), Methods of Soil Analysis: Part 1-Physical and Mineralogical Methods, pp. 945
  • Schuur, (2008), BioScience, 58, pp. 701, 10.1641/B580807
  • Bockheim, (2015), Cryopedology. Progress in Soil Science, pp. 173
  • MacDougall, (2008), Geophys. Res. Lett., 35, pp. L13702, 10.1029/2008GL034639
  • Hugelius, (2014), Biogeosciences, 11, pp. 6573, 10.5194/bg-11-6573-2014
  • Nicolsky, (2007), Geophys. Res. Lett., 34, pp. L08501, 10.1029/2007GL029525
  • Abu-Hamdeh, (2000), Soil. Sci. Soc. Amer. J., 64, pp. 1285, 10.2136/sssaj2000.6441285x
  • Outcalt, (1990), Water Resour. Res., 26, pp. 1509
  • Froese, (2008), Science, 321, pp. 1648, 10.1126/science.1157525
  • Hugelius, (2014), Biogeosciences, 11, pp. 6573, 10.5194/bg-11-6573-2014
  • Zhang, (2008), Polar Geogr., 31, pp. 47, 10.1080/10889370802175895
  • Dirmeyer, (2009), J. Hydrometeor., 10, pp. 278, 10.1175/2008JHM1016.1
  • Woo, (2012), Permafrost Hydrology., pp. 564, 10.1007/978-3-642-23462-0
  • Schuur, (2015), Nature, 520, pp. 171, 10.1038/nature14338
  • Lawrence, (2005), Geophys. Res. Lett., 32, pp. L24401, 10.1029/2005GL025080
  • Brubaker, (1996), Water Resour. Res., 32, pp. 1343, 10.1029/96WR00005
  • González-Rouco, (2021), J. Hydrometeor., 22, pp. 3211, 10.1175/JHM-D-21-0024.1
  • Forzieri, (2020), Nat. Climate Change, 10, pp. 356, 10.1038/s41558-020-0717-0
  • Shukla, (2019), Climate change and land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems., pp. 896
  • Bonan, (1995), Remote Sens. Environ., 51, pp. 57, 10.1016/0034-4257(94)00065-U
  • Biskaborn, (2019), Nat. Commun., 10, pp. 264, 10.1038/s41467-018-08240-4
  • González-Rouco, (2009), Climate Past, 5, pp. 97, 10.5194/cp-5-97-2009
  • Bartlett, (2004), J. Geophys. Res., 109, pp. F04008, 10.1029/2004JF000224
  • Bartlett, (2005), J. Geophys. Res., 110, pp. F03008, 10.1029/2005JF000293
  • Shukla, (2019), Climate change and land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems., pp. 896
  • Sentman, (2011), Earth Interact., 15, 10.1175/2011EI401.1
  • van Vuuren, (2011), Climatic Change, 109, pp. 5, 10.1007/s10584-011-0148-z
  • Koster, (2001), J. Hydrometeor., 2, pp. 558, 10.1175/1525-7541(2001)002<0558:SMMICM>2.0.CO;2
  • Geiger, (1965), The Climate Near the Ground., pp. 626
  • Geiger, (1965), The Climate Near the Ground., pp. 626
  • Hillel, (1998), Environmental Soil Physics., pp. 800
  • Zhang, (2005), J. Geophys. Res., 110, pp. D16101, 10.1029/2004JD005642
  • Seneviratne, (2006), J. Hydrometeor., 7, pp. 1090, 10.1175/JHM533.1
  • Burke, (2020), Cryosphere, 14, pp. 3155, 10.5194/tc-14-3155-2020
  • Lawrence, (2007), J. Hydrometeor., 8, pp. 862, 10.1175/JHM596.1
  • Dickinson, (1995a), Rev. Geophys., 33, pp. 917, 10.1029/95RG00284
  • Koven, (2011), Proc. Natl. Acad. Sci. USA, 108, pp. 14 769, 10.1073/pnas.1103910108
  • Hagemann, (2016), Earth Syst. Dyn., 7, pp. 611, 10.5194/esd-7-611-2016
  • Hagemann, (2016), Earth Syst. Dyn., 7, pp. 611, 10.5194/esd-7-611-2016
  • Seneviratne, (2010), Earth-Sci. Rev., 99, pp. 125, 10.1016/j.earscirev.2010.02.004
  • Kumar, (2016), Water Resour. Res., 52, pp. 3127, 10.1002/2016WR018607
  • Luo, (2003), J. Hydrometeor., 4, pp. 334, 10.1175/1525-7541(2003)4<334:EOFSOS>2.0.CO;2
  • Carslaw, (1959), Conduction of Heat in Solids., pp. 510
  • Dickinson, (1995b), Remote Sens. Environ., 51, pp. 27, 10.1016/0034-4257(94)00062-R
  • Smerdon, (2006), Geophys. Res. Lett., 33, pp. L14402, 10.1029/2006GL026816
  • Hagemann, (2015), Climate Dyn., 44, pp. 1731, 10.1007/s00382-014-2221-6
  • Koster, (2001), J. Hydrometeor., 2, pp. 558, 10.1175/1525-7541(2001)002<0558:SMMICM>2.0.CO;2
  • Koven, (2011), Proc. Natl. Acad. Sci. USA, 108, pp. 14 769, 10.1073/pnas.1103910108
  • von Schuckmann, (2020), Earth Syst. Sci. Data, 12, pp. 2013, 10.5194/essd-12-2013-2020
  • Guillevic, (2002), J. Hydrometeor., 3, pp. 617, 10.1175/1525-7541(2002)003<0617:IOTIVO>2.0.CO;2
  • Luo, (2003), J. Hydrometeor., 4, pp. 334, 10.1175/1525-7541(2003)4<334:EOFSOS>2.0.CO;2
  • Mauritsen, (2019), J. Adv. Model. Earth Syst., 11, pp. 998, 10.1029/2018MS001400
  • Guo, (2006), J. Hydrometeor., 7, pp. 611, 10.1175/JHM511.1
  • Berner, (2020), Nat. Commun., 11, pp. 4621, 10.1038/s41467-020-18479-5
  • Menard, (2021), Bull. Amer. Meteor. Soc., 102, pp. E61, 10.1175/BAMS-D-19-0329.1
  • Woo, (2012), Permafrost Hydrology., pp. 564, 10.1007/978-3-642-23462-0
  • Brubaker, (1996), Water Resour. Res., 32, pp. 1343, 10.1029/96WR00005
  • González-Rouco, (2009), Climate Past, 5, pp. 97, 10.5194/cp-5-97-2009
  • Beltrami, (2003), Global Planet. Change, 38, pp. 291, 10.1016/S0921-8181(03)00112-7
  • Hong, (2009), J. Geophys. Res., 114, pp. D18118, 10.1029/2008JD011249
  • Delworth, (1988), J. Climate, 1, pp. 523, 10.1175/1520-0442(1988)001<0523:TIOPEO>2.0.CO;2
  • Seneviratne, (2008), Climate Variability and Extremes during the Past 100 Years, Advances in Global Change Research, Vol. 33, pp. 179, 10.1007/978-1-4020-6766-2_12
  • Zhang, (2005), J. Geophys. Res., 110, pp. D16101, 10.1029/2004JD005642
  • Outcalt, (1990), Water Resour. Res., 26, pp. 1509
  • Rempel, (2016), Geosciences, 6, pp. 38, 10.3390/geosciences6030038
  • Kumar, (2016), Water Resour. Res., 52, pp. 3127, 10.1002/2016WR018607
  • Forzieri, (2020), Nat. Climate Change, 10, pp. 356, 10.1038/s41558-020-0717-0
  • Paquin, (2015), Climate Dyn., 44, pp. 203, 10.1007/s00382-014-2185-6
  • Manabe, (1980), J. Geophys. Res., 85, pp. 5529, 10.1029/JC085iC10p05529
  • Kleidon, (1998), Global Change Biol., 4, pp. 275, 10.1046/j.1365-2486.1998.00152.x
  • Wang, (2016), Geosci. Model Dev., 9, pp. 363, 10.5194/gmd-9-363-2016
  • Niu, (2006), J. Hydrometeor., 7, pp. 937, 10.1175/JHM538.1
  • Cuesta-Valero, (2016), Geophys. Res. Lett., 43, pp. 2016GL068496, 10.1002/2016GL068496
  • Andresen, (2020), Cryosphere, 14, pp. 445, 10.5194/tc-14-445-2020
  • MacDougall, (2008), Geophys. Res. Lett., 35, pp. L13702, 10.1029/2008GL034639
  • MacDougall, (2015), Environ. Res. Lett., 10, pp. 125003, 10.1088/1748-9326/10/12/125003
  • Ekici, (2015), Cryosphere, 9, pp. 1343, 10.5194/tc-9-1343-2015
  • Lawrence, (2007), J. Hydrometeor., 8, pp. 862, 10.1175/JHM596.1
  • Soong, (2020), Biogeosciences, 125, pp. e2019JG005266
  • Melo-Aguilar, (2018), Climate Past, 14, pp. 1583, 10.5194/cp-14-1583-2018
  • Loranty, (2018), Biogeosciences, 15, pp. 5287, 10.5194/bg-15-5287-2018
  • Pollack, (2000), Annu. Rev. Earth Planet. Sci., 28, pp. 339, 10.1146/annurev.earth.28.1.339
  • Koster, (2004), Science, 305, pp. 1138, 10.1126/science.1100217
  • Levitus, (2012), Geophys. Res. Lett., 39, pp. L10603
  • Comyn-Platt, (2018), Nat. Geosci., 11, pp. 568, 10.1038/s41561-018-0174-9
  • Hermoso de Mendoza, (2020), Geosci. Model Dev., 13, pp. 1663, 10.5194/gmd-13-1663-2020
  • Smerdon, (2006), Geophys. Res. Lett., 33, pp. L14402, 10.1029/2006GL026816
  • Bockheim, (2015), Cryopedology. Progress in Soil Science, pp. 173
  • Slater, (2013), J. Climate, 26, pp. 5608, 10.1175/JCLI-D-12-00341.1
  • Heimann, (2008), Nature, 451, pp. 289, 10.1038/nature06591