Increasing the Depth of a Land Surface Model. Part I: Impacts on the Subsurface Thermal Regime and Energy Storage

  1. J. F. González-Rouco 1
  2. Steinert N.J.
  3. E. García-Bustamante
  4. Hagemann S.
  5. De Vrese P.
  6. Jungclaus J.H.
  7. Lorenz S.J.
  8. Melo-Aguilar C.
  9. F. García-Pereira 1
  10. Navarro J.
  1. 1 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

Revista:
Journal of Hydrometeorology

ISSN: 1525-755X 1525-7541

Año de publicación: 2021

Volumen: 22

Número: 12

Páginas: 3211-3230

Tipo: Artículo

DOI: 10.1175/JHM-D-21-0024.1 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Journal of Hydrometeorology

Información de financiación

Financiadores

Referencias bibliográficas

  • Nabel, (2020), Geosci. Model Dev., 13, pp. 185, 10.5194/gmd-13-185-2020
  • MacDougall, (2010), J. Geophys. Res., 115, pp. D12109, 10.1029/2009JD013170
  • Knutti, (2017), Nat. Geosci., 10, pp. 727, 10.1038/ngeo3017
  • Bonan, (2018), Geosci. Model Dev., 11, pp. 1467, 10.5194/gmd-11-1467-2018
  • Meehl, (2020), Sci. Adv., 6, pp. eaba1981, 10.1126/sciadv.aba1981
  • Cuesta-Valero, (2021), Climate Past, 17, pp. 451, 10.5194/cp-17-451-2021
  • Pollack, (2005), Geophys. Res. Lett., 32, pp. L15405, 10.1029/2005GL023869
  • Otto-Bliesner, (2016), Bull. Amer. Meteor. Soc., 97, pp. 735, 10.1175/BAMS-D-14-00233.1
  • Schulz, (2001), J. Appl. Meteor., 40, pp. 642, 10.1175/1520-0450(2001)040<0642:OTLSAC>2.0.CO;2
  • Koster, (2006), J. Hydrometeor., 7, pp. 590, 10.1175/JHM510.1
  • MacDougall, (2010), J. Geophys. Res., 115, pp. D12109, 10.1029/2009JD013170
  • Stoica, (1997), Introduction to Spectral Analysis., pp. 319
  • McGuire, (2018), Proc. Natl. Acad. Sci. USA, 115, pp. 3882, 10.1073/pnas.1719903115
  • Cuesta-Valero, (2016), Geophys. Res. Lett., 43, pp. 5326, 10.1002/2016GL068496
  • Guo, (2006), J. Hydrometeor., 7, pp. 611, 10.1175/JHM511.1
  • Craig, (2017), Geosci. Model Dev., 10, pp. 3297, 10.5194/gmd-10-3297-2017
  • Brovkin, (2009), Geophys. Res. Lett., 36, pp. L07405, 10.1029/2009GL037543
  • van Genuchten, (1980), Soil. Sci. Soc. Amer. J., 44, pp. 892, 10.2136/sssaj1980.03615995004400050002x
  • Ilyina, (2013), J. Adv. Model. Earth Syst., 5, pp. 287, 10.1029/2012MS000178
  • Holland, (2003), Climate Dyn., 21, pp. 221, 10.1007/s00382-003-0332-6
  • de Vrese, (2018), Earth Syst. Dyn., 9, pp. 393, 10.5194/esd-9-393-2018
  • Alexeev, (2007), Geophys. Res. Lett., 34, pp. L09502, 10.1029/2007GL029536
  • Carslaw, (1959), Conduction of Heat in Solids., pp. 510
  • MacDougall, (2008), Geophys. Res. Lett., 35, pp. L13702, 10.1029/2008GL034639
  • Seneviratne, (2010), Earth-Sci. Rev., 99, pp. 125, 10.1016/j.earscirev.2010.02.004
  • Mareschal, (1992), Climate Dyn., 6, pp. 135, 10.1007/BF00193525
  • Oleson, (2010), Tech. Rep. NCAR/TN-478+STR, pp. 257
  • Hagemann, (2013), J. Adv. Model. Earth Syst., 5, pp. 259, 10.1029/2012MS000173
  • Cuesta-Valero, (2021), Climate Past, 17, pp. 451, 10.5194/cp-17-451-2021
  • Oleson, (2013), Tech. Rep. NCAR/TN-503+STR, pp. 420
  • von Schuckmann, (2020), Earth Syst. Sci. Data, 12, pp. 2013, 10.5194/essd-12-2013-2020
  • Stevens, (2007), Geophys. Res. Lett., 34, pp. L02702, 10.1029/2006GL028546
  • Turcotte, (2002), Geodynamics., pp. 472, 10.1017/CBO9780511807442
  • Melo-Aguilar, (2018), Climate Past, 14, pp. 1583, 10.5194/cp-14-1583-2018
  • González-Rouco, (2006), Geophys. Res. Lett., 33, pp. L01703, 10.1029/2005GL024693
  • Raddatz, (2007), Climate Dyn., 29, pp. 565, 10.1007/s00382-007-0247-8
  • Hagemann, (2016), Earth Syst. Dyn., 7, pp. 611, 10.5194/esd-7-611-2016
  • Trenberth, (2009), Bull. Amer. Meteor. Soc., 90, pp. 311, 10.1175/2008BAMS2634.1
  • Hagemann, (2015), Climate Dyn, 44, pp. 1731, 10.1007/s00382-014-2221-6
  • Crowley, (2000), Ambio, 29, pp. 51, 10.1579/0044-7447-29.1.51
  • Steinert, (2021), J. Hydrometeor., 22, pp. 3231, 10.1175/JHM-D-21-0023.1
  • Otto-Bliesner, (2016), Bull. Amer. Meteor. Soc., 97, pp. 735, 10.1175/BAMS-D-14-00233.1
  • Ekici, (2014), Geosci. Model Dev., 7, pp. 631, 10.5194/gmd-7-631-2014
  • Hagemann, (2016), Earth Syst. Dyn., 7, pp. 611, 10.5194/esd-7-611-2016
  • Roeckner, (1989), Research Activities in Oceanic and Atmospheric Modelling, pp. 1
  • Schulz, (2001), J. Appl. Meteor., 40, pp. 642, 10.1175/1520-0450(2001)040<0642:OTLSAC>2.0.CO;2
  • Lawrence, (2008), J. Geophys. Res., 113, pp. F02011, 10.1029/2007JF000883
  • Zhao, (2017), Proc. Natl. Acad. Sci. USA, 114, pp. 9326, 10.1073/pnas.1701762114
  • Alexeev, (2007), Geophys. Res. Lett., 34, pp. L09502, 10.1029/2007GL029536
  • Burke, (2020), Cryosphere, 14, pp. 3155, 10.5194/tc-14-3155-2020
  • Trenberth, (2009), Bull. Amer. Meteor. Soc., 90, pp. 311, 10.1175/2008BAMS2634.1
  • Simpkins, (2017), Nat. Climate Change, 7, pp. 684, 10.1038/nclimate3398
  • Jungclaus, (2013), J. Adv. Model. Earth Syst., 5, pp. 422, 10.1002/jame.20023
  • Wu, (2018), J. Climate, 31, pp. 5947, 10.1175/JCLI-D-17-0380.1
  • Goll, (2015), Global Biogeochem. Cycles, 29, pp. 1511, 10.1002/2014GB004988
  • Rhein, (2013), Climate Change 2013: The Physical Science Basis., pp. 255
  • Eyring, (2016), Geosci. Model Dev., 9, pp. 1937, 10.5194/gmd-9-1937-2016
  • Pollack, (2000), Annu. Rev. Earth Planet. Sci., 28, pp. 339, 10.1146/annurev.earth.28.1.339
  • Hansen, (2005), Science, 308, pp. 1431, 10.1126/science.1110252
  • Heidkamp, (2018), Geosci. Model Dev., 11, pp. 3465, 10.5194/gmd-11-3465-2018
  • Hagemann, (2020), Front. Earth Sci., 8, pp. 12, 10.3389/feart.2020.00012
  • McGuffie, (2005), A Climate Modelling Primer., pp. 296, 10.1002/0470857617
  • Jungclaus, (2017), Geosci. Model Dev., 10, pp. 4005, 10.5194/gmd-10-4005-2017
  • Nabel, (2020), Geosci. Model Dev., 13, pp. 185, 10.5194/gmd-13-185-2020
  • Lawrence, (2019), J. Adv. Model. Earth Syst., 11, pp. 4245, 10.1029/2018MS001583
  • Rhein, (2013), Climate Change 2013: The Physical Science Basis., pp. 255
  • Raddatz, (2007), Climate Dyn., 29, pp. 565, 10.1007/s00382-007-0247-8
  • Dunne, (1996), Int. J. Climatol., 16, pp. 841, 10.1002/(SICI)1097-0088(199608)16:8<841::AID-JOC60>3.0.CO;2-8
  • González-Rouco, (2009), Climate Past, 5, pp. 97, 10.5194/cp-5-97-2009
  • Huang, (2016), Int. J. Biometeor., 60, pp. 977, 10.1007/s00484-015-1090-y
  • Phillips, (2020), J. Geophys. Res. Biogeosci., 125, pp. e2020JG005668, 10.1029/2020JG005668
  • Mauritsen, (2019), J. Adv. Model. Earth Syst., 11, pp. 998, 10.1029/2018MS001400
  • Melo-Aguilar, (2018), Climate Past, 14, pp. 1583, 10.5194/cp-14-1583-2018
  • Cuesta-Valero, (2016), Geophys. Res. Lett., 43, pp. 5326, 10.1002/2016GL068496
  • Oleson, (2010), Tech. Rep. NCAR/TN-478+STR, pp. 257
  • Lawrence, (2012), J. Climate, 25, pp. 3071, 10.1175/JCLI-D-11-00256.1
  • Oreskes, (1994), Science, 263, pp. 641, 10.1126/science.263.5147.641
  • Beltrami, (2006), Geophys. Res. Lett., 33, pp. L06717, 10.1029/2006GL025676
  • Mauritsen, (2019), J. Adv. Model. Earth Syst., 11, pp. 998, 10.1029/2018MS001400
  • Burke, (2020), Cryosphere, 14, pp. 3155, 10.5194/tc-14-3155-2020
  • Ilyina, (2013), J. Adv. Model. Earth Syst., 5, pp. 287, 10.1029/2012MS000178
  • Ortega, (2013), Climate Past, 9, pp. 547, 10.5194/cp-9-547-2013
  • Sun, (2004), Adv. Atmos. Sci., 21, pp. 868, 10.1007/BF02915589
  • Lawrence, (2011), J. Adv. Model. Earth Syst., 33, pp. M03001
  • Reick, (2013), J. Adv. Model. Earth Syst., 5, pp. 459, 10.1002/jame.20022
  • Krinner, (2018), Geosci. Model Dev., 11, pp. 5027, 10.5194/gmd-11-5027-2018
  • Cubasch, (2013), Climate Change 2013: The Physical Science Basis, pp. 119
  • Carslaw, (1959), Conduction of Heat in Solids., pp. 510
  • Palmer, (2019), Proc. Natl. Acad. Sci. USA, 116, pp. 24 390, 10.1073/pnas.1906691116
  • Bekryaev, (2010), J. Climate, 23, pp. 3888, 10.1175/2010JCLI3297.1
  • Palmer, (2019), Proc. Natl. Acad. Sci. USA, 116, pp. 24 390, 10.1073/pnas.1906691116
  • Seneviratne, (2010), Earth-Sci. Rev., 99, pp. 125, 10.1016/j.earscirev.2010.02.004
  • Beltrami, (2006), Geophys. Res. Lett., 33, pp. L06717, 10.1029/2006GL025676
  • Lynch-Stieglitz, (1994), J. Climate, 7, pp. 1842, 10.1175/1520-0442(1994)007<1842:TDAVOA>2.0.CO;2
  • Ortega, (2013), Climate Past, 9, pp. 547, 10.5194/cp-9-547-2013
  • Levitus, (2012), Geophys. Res. Lett., 39, pp. L10603
  • Bonan, (2018), Geosci. Model Dev., 11, pp. 1467, 10.5194/gmd-11-1467-2018
  • Bonan, (2018), Science, 359, pp. eaam8328, 10.1126/science.aam8328
  • Steinert, (2021), J. Hydrometeor., 22, pp. 3231, 10.1175/JHM-D-21-0023.1
  • Dümenil, (1992), Advances in Theoretical Hydrology: A Tribute to J. Dooge, pp. 129, 10.1016/B978-0-444-89831-9.50016-8
  • Holland, (2003), Climate Dyn., 21, pp. 221, 10.1007/s00382-003-0332-6
  • Pachauri, (2014), Climate Change 2014: Synthesis Report., pp. 151
  • Gao, (2008), J. Geophys. Res., 113, pp. D23111, 10.1029/2008JD010239
  • González-Rouco, (2006), Geophys. Res. Lett., 33, pp. L01703, 10.1029/2005GL024693
  • Gao, (2008), J. Geophys. Res., 113, pp. D23111, 10.1029/2008JD010239
  • Heidkamp, (2018), Geosci. Model Dev., 11, pp. 3465, 10.5194/gmd-11-3465-2018
  • Lawrence, (2008), J. Geophys. Res., 113, pp. F02011, 10.1029/2007JF000883
  • Eyring, (2016), Geosci. Model Dev., 9, pp. 1937, 10.5194/gmd-9-1937-2016
  • Hansen, (2005), Science, 308, pp. 1431, 10.1126/science.1110252
  • Masson-Delmotte, (2018), Global Warming of 1.5°C, pp. 3
  • Crowley, (2000), Ambio, 29, pp. 51, 10.1579/0044-7447-29.1.51
  • McGuire, (2018), Proc. Natl. Acad. Sci. USA, 115, pp. 3882, 10.1073/pnas.1719903115
  • Hansen, (2011), Atmos. Chem. Phys., 11, pp. 13 421, 10.5194/acp-11-13421-2011
  • Taylor, (2012), Bull. Amer. Meteor. Soc., 93, pp. 485, 10.1175/BAMS-D-11-00094.1
  • Phillips, (2020), J. Geophys. Res. Biogeosci., 125, pp. e2020JG005668, 10.1029/2020JG005668
  • Stevens, (2013), J. Adv. Model. Earth Syst., 5, pp. 146, 10.1002/jame.20015
  • Bonan, (2018), Science, 359, pp. eaam8328, 10.1126/science.aam8328
  • Huang, (2016), Int. J. Biometeor., 60, pp. 977, 10.1007/s00484-015-1090-y
  • Warrilow, (1986), Met Office Tech. Note 20 DCTN 38, pp. 92
  • Krinner, (2018), Geosci. Model Dev., 11, pp. 5027, 10.5194/gmd-11-5027-2018
  • Brovkin, (2013), J. Adv. Model. Earth Syst., 5, pp. 48, 10.1029/2012MS000169
  • Meehl, (2020), Sci. Adv., 6, pp. eaba1981, 10.1126/sciadv.aba1981
  • Roeckner, (1989), Research Activities in Oceanic and Atmospheric Modelling, pp. 1
  • Sapriza-Azuri, (2018), Hydrol. Earth Syst. Sci., 22, pp. 3295, 10.5194/hess-22-3295-2018
  • Jungclaus, (2017), Geosci. Model Dev., 10, pp. 4005, 10.5194/gmd-10-4005-2017
  • Hansen, (2011), Atmos. Chem. Phys., 11, pp. 13 421, 10.5194/acp-11-13421-2011
  • Masson-Delmotte, (2018), Global Warming of 1.5°C, pp. 3
  • Taylor, (2012), Bull. Amer. Meteor. Soc., 93, pp. 485, 10.1175/BAMS-D-11-00094.1
  • Soong, (2020), J. Geophys. Res. Biogeosci., 125, pp. e2019JG005266, 10.1029/2019JG005266
  • Lawrence, (2012), J. Climate, 25, pp. 3071, 10.1175/JCLI-D-11-00256.1
  • Turcotte, (2002), Geodynamics., pp. 472, 10.1017/CBO9780511807442
  • Guo, (2006), J. Hydrometeor., 7, pp. 611, 10.1175/JHM511.1
  • Pollack, (2005), Geophys. Res. Lett., 32, pp. L15405, 10.1029/2005GL023869
  • Mareschal, (1992), Climate Dyn., 6, pp. 135, 10.1007/BF00193525
  • Zhao, (2017), Proc. Natl. Acad. Sci. USA, 114, pp. 9326, 10.1073/pnas.1701762114
  • Hagemann, (2013), J. Adv. Model. Earth Syst., 5, pp. 259, 10.1029/2012MS000173
  • Dümenil, (1992), Advances in Theoretical Hydrology: A Tribute to J. Dooge, pp. 129, 10.1016/B978-0-444-89831-9.50016-8
  • Koster, (2006), J. Hydrometeor., 7, pp. 590, 10.1175/JHM510.1
  • Hagemann, (2020), Front. Earth Sci., 8, pp. 12, 10.3389/feart.2020.00012
  • Knutti, (2017), Nat. Geosci., 10, pp. 727, 10.1038/ngeo3017
  • Warrilow, (1986), Met Office Tech. Note 20 DCTN 38, pp. 92
  • Hagemann, (2015), Climate Dyn, 44, pp. 1731, 10.1007/s00382-014-2221-6
  • Stevens, (2007), Geophys. Res. Lett., 34, pp. L02702, 10.1029/2006GL028546
  • McGuffie, (2005), A Climate Modelling Primer., pp. 296, 10.1002/0470857617
  • von Schuckmann, (2020), Earth Syst. Sci. Data, 12, pp. 2013, 10.5194/essd-12-2013-2020
  • de Vrese, (2018), Earth Syst. Dyn., 9, pp. 393, 10.5194/esd-9-393-2018
  • Roeckner, (1992), Simulation of the present day climate with the ECHAM model: Impact of model physics and resolution. Tech. Rep. 93, pp. 175
  • Sun, (2004), Adv. Atmos. Sci., 21, pp. 868, 10.1007/BF02915589
  • Ekici, (2014), Geosci. Model Dev., 7, pp. 631, 10.5194/gmd-7-631-2014
  • Pachauri, (2014), Climate Change 2014: Synthesis Report., pp. 151
  • Brovkin, (2013), J. Adv. Model. Earth Syst., 5, pp. 48, 10.1029/2012MS000169
  • González-Rouco, (2009), Climate Past, 5, pp. 97, 10.5194/cp-5-97-2009
  • Reick, (2013), J. Adv. Model. Earth Syst., 5, pp. 459, 10.1002/jame.20022
  • Brovkin, (2009), Geophys. Res. Lett., 36, pp. L07405, 10.1029/2009GL037543
  • Soong, (2020), J. Geophys. Res. Biogeosci., 125, pp. e2019JG005266, 10.1029/2019JG005266
  • Pollack, (2000), Annu. Rev. Earth Planet. Sci., 28, pp. 339, 10.1146/annurev.earth.28.1.339
  • Smerdon, (2006), Geophys. Res. Lett., 33, pp. L14402, 10.1029/2006GL026816
  • Sapriza-Azuri, (2018), Hydrol. Earth Syst. Sci., 22, pp. 3295, 10.5194/hess-22-3295-2018
  • Smerdon, (2006), Geophys. Res. Lett., 33, pp. L14402, 10.1029/2006GL026816
  • Lawrence, (2019), J. Adv. Model. Earth Syst., 11, pp. 4245, 10.1029/2018MS001583
  • Wu, (2018), J. Climate, 31, pp. 5947, 10.1175/JCLI-D-17-0380.1
  • Stevens, (2013), J. Adv. Model. Earth Syst., 5, pp. 146, 10.1002/jame.20015
  • Oreskes, (1994), Science, 263, pp. 641, 10.1126/science.263.5147.641
  • Lawrence, (2011), J. Adv. Model. Earth Syst., 33, pp. M03001
  • Levitus, (2012), Geophys. Res. Lett., 39, pp. L10603
  • Hermoso de Mendoza, (2020), Geosci. Model Dev., 13, pp. 1663, 10.5194/gmd-13-1663-2020
  • von Storch, (2010), Wiley Interdiscip. Rev.: Climate Change, 1, pp. 305
  • van Genuchten, (1980), Soil. Sci. Soc. Amer. J., 44, pp. 892, 10.2136/sssaj1980.03615995004400050002x
  • Dunne, (1996), Int. J. Climatol., 16, pp. 841, 10.1002/(SICI)1097-0088(199608)16:8<841::AID-JOC60>3.0.CO;2-8
  • Craig, (2017), Geosci. Model Dev., 10, pp. 3297, 10.5194/gmd-10-3297-2017
  • Goll, (2015), Global Biogeochem. Cycles, 29, pp. 1511, 10.1002/2014GB004988
  • Oleson, (2013), Tech. Rep. NCAR/TN-503+STR, pp. 420
  • Giorgetta, (2013), J. Adv. Model. Earth Syst., 5, pp. 572, 10.1002/jame.20038
  • Giorgetta, (2013), J. Adv. Model. Earth Syst., 5, pp. 572, 10.1002/jame.20038
  • Cubasch, (2013), Climate Change 2013: The Physical Science Basis, pp. 119
  • MacDougall, (2008), Geophys. Res. Lett., 35, pp. L13702, 10.1029/2008GL034639
  • Bekryaev, (2010), J. Climate, 23, pp. 3888, 10.1175/2010JCLI3297.1
  • Stoica, (1997), Introduction to Spectral Analysis., pp. 319
  • von Storch, (2010), Wiley Interdiscip. Rev.: Climate Change, 1, pp. 305
  • Flato, (2013), Climate Change 2013: The Physical Science Basis., pp. 741
  • Flato, (2013), Climate Change 2013: The Physical Science Basis., pp. 741
  • Jungclaus, (2013), J. Adv. Model. Earth Syst., 5, pp. 422, 10.1002/jame.20023
  • Simpkins, (2017), Nat. Climate Change, 7, pp. 684, 10.1038/nclimate3398
  • Roeckner, (1992), Simulation of the present day climate with the ECHAM model: Impact of model physics and resolution. Tech. Rep. 93, pp. 175
  • Hermoso de Mendoza, (2020), Geosci. Model Dev., 13, pp. 1663, 10.5194/gmd-13-1663-2020
  • Lynch-Stieglitz, (1994), J. Climate, 7, pp. 1842, 10.1175/1520-0442(1994)007<1842:TDAVOA>2.0.CO;2