Estudio de las ondas de gravedad generadas en la cima de un flujo catabático

  1. Viana, Samuel 1
  2. Terradellas, Enric 1
  3. Yagüe, Carlos 2
  1. 1 Delegación Territorial de AEMET en Cataluña, Barcelona
  2. 2 Dpto. de Geofísica y Meteorología, Universidad Complutense, Madrid
Revista:
Acta de las Jornadas Científicas de la Asociación Meteorológica Española

ISSN: 2605-2199

Año de publicación: 2010

Título del ejemplar: XXXI Jornadas Científicas de la AME y el 11º Encuentro hispano-luso de Meteorología

Número: 31

Tipo: Artículo

Otras publicaciones en: Acta de las Jornadas Científicas de la Asociación Meteorológica Española

Resumen

En esta contribución se estudia, a través de las variables meteorológicas registradas en un laboratorio atmosférico de capa límite y mediante herramientas de análisis multiescala (la transformada wavelet y la descomposición multiresolución), la irrupción de un flujo catabático en una región muy llana y homogénea de la meseta castellana. Se muestran las analogías que pueden establecerse con los frentes meteorológicos clásicos, y se estudia la transformación del régimen de turbulencia a la llegada del flujo catabático, así como la formación de ondas de gravedad en la interfase con el aire mas cálido situado por encima.

Referencias bibliográficas

  • Cuxart, J., Jiménez M.A. & Martínez, D. (2007). Nocturnal mesobeta basin and katabatic flows on a midlatitude island, Mon. Wea. Rev. 135, 918–932.
  • Renfrew, I. A. & Anderson, P. S. (2006). Profiles of katabatic flow in summer and winter over Coats Land, Antarctica. Q. J. Roy. Meteor. Soc. 132, 779–802.
  • Terradellas, E. & Cano D. (2007). Implementation of a Single-Column Model for Fog and Low Cloud Forecasting at Central Spanish Airports, Pure Appl. Geoph. 6-7, 1327-1345.
  • Viana, S., C. Yagüe & G. Maqueda (2009): Propagation and effects of a mesoscale gravity-wave over a weakly-stratified stable boundary layer during SABLES2006 field campaign. Boundary-Layer Meteorol., 133, 165-188.
  • Viana, S., Yagüe C., Maqueda G. y Morales, G. (2007). Study of the surface pressure fluctuations generated by waves and turbulence in the nocturnal Boundary layer during SABLES 2006 field campaign. Física de la Tierra, 19, 55-71. Available from: http://revistas.ucm.es/fis/02144557/articulos/FITE07 07110055A.PDF
  • Maguire A. J., J.M. Rees, and S.H. Derbyshire, 2006: Stable atmospheric boundary layer over a uniform slope: some theoretical concepts. BoundaryLayer Meteorol., 120, 219-227.
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, Hingham MA, 666 pp.
  • Conangla, L., J. Cuxart, and M. R. Soler, 2008: Characterisation of the Nocturnal Boundary Layer at a site in northern Spain. Boundary-Layer Meteorol., 128, 255-276.
  • Daubechies, I., 1992: Ten lectures on wavelets. CBMS Lecture Notes Series. SIAM, Philadelphia, PA, 357 pp.
  • Farge, M., 1992: Wavelet transforms and their applications to turbulence. Ann. Rev. Fluid Mech., 24, 395-457.
  • Torrence, C., and G. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 1-78.
  • Terradellas, E., G. Morales, J. Cuxart and C. Yagüe: 2001. Wavelet methods: application to the study of the atmospheric boundary layer under nonstationary conditions. Dyn. Atmos. Oceans, 34, 225244.
  • Meyers, S. D., B. G. Kelly, and J. J. O’Brien, 1993: An introduction to wavelet analysis in oceanography and meteorology: With application to the dispersion of Yanai waves. Mon. Wea. Rev., 121, 2858-2866.
  • Rees, J. M., and S. D. Mobbs, 1988: Studies of internal gravity waves at Halley base, Antarctica, using wind observations. Quart. J. Roy. Meteor. Soc., 114, 939-966.
  • Einaudi, F., A. J. Bedard Jr., and J. J.Finnigan, 1989: A climatology of gravity waves and other
  • coherent disturbances at the Boulder Atmospheric Observatory during March–April 1984. J. Atmos. Sci., 46, 303-329.
  • Denholm-Price, J. C. W., and J. M. Rees, 1999: Detecting waves using an array of sensors, Mon. Wea. Rev., 127, 57-69.
  • Howell, J. F., and L. Mahrt, 1997: Multiresolution flux decomposition. BoundaryLayer Meteorol. 83: 117–137.
  • Voronovich V., and G. Kiely, 2007: On the gap in the spectra of surface-layer atmospheric turbulence. Boundary-Layer Meteorol., 122, 67-83
  • Haar A., 1910; Zur Theorie der orthogonalen Funktionensysteme [On the theory of orthogonal function systems]. Mathematische Annalen, 69, 331–371.
  • Tennekes, H. 1976: Fourier-transform ambiguity in turbulence dynamics, J. Atmos. Sci., 33, 1660-1663.
  • Terradellas, E., R. M. Soler, E. Ferreres and M. Bravo, 2005: Analysis of oscillations in the stable atmospheric boundary-layer using wavelet methods. Boundary-Layer Meteorol., 114, 489-518
  • Cuxart, J., 2008: Nocturnal basin low-level jets: an integrated study. Acta Geophysica, 56, 100-113.
  • Nai-Ping, L., Neff, W. D., and Kaimal, J. C.: Wave and turbulence structure in a disturbed nocturnal inversion, Boundary-Layer Meteorol., 26, 141–155, 1983.
  • Yagüe, C. and Redondo, J. M.: A case study of turbulent parameters during the Antarctic winter, Antarc. Sci., 7, 421–433, 1995