Bases genéticas, moleculares y bioquímicas del envejecimiento auditivo ¿Qué nos enseñan los modelos experimentales

  1. Cervantes, Blanca 1
  2. Bermúdez-Muñoz, Jose M. 2
  3. Ruiz-García, Carmen 3
  4. Lassaletta, Luis 4
  5. Contreras, Julio 5
  6. Murillo-Cuesta, Silvia 6
  7. Varela-Nieto, Isabel 2
  1. 1 Facultad de Medicina, Universidad Anáhuac, Puebla, México
  2. 2 Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, España; Centro de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, España
  3. 3 Servicio ORL, Hospital Universitario La Paz, Madrid, España
  4. 4 Servicio ORL, Hospital Universitario La Paz, Madrid, España; Instituto de Investigación Hospital Universitario La Paz, Madrid, España; ; Centro de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, España
  5. 5 Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, España; Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, España; ; Centro de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, España
  6. 6 Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, ISCiii); Intituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM)), MAdrid, España; Instituto de Investigación Hospital Universitario La Paz, Madrid, España
Revista:
AUDITIO: Spanish Journal of Audiology

ISSN: 1577-3108

Año de publicación: 2022

Volumen: 0

Número: 6

Tipo: Artículo

DOI: 10.51445/SJA.AUDITIO.VOL6.2022.0084 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: AUDITIO: Spanish Journal of Audiology

Objetivos de desarrollo sostenible

Resumen

La presbiacusia afecta a una de cada tres personas mayores de 65 años y constituye el déficit neurosensorial más prevalente. Antecede a la aparición de la fragilidad cognitiva, la acelera y se asocia con un mayor riesgo de padecer enfermedades neurodegenerativas como la demencia o el Alzheimer. La aparición y evolución de la presbiacusia están influidas por factores genéticos, todavía poco conocidos, y ambientales, entre los que destacan la exposición a ruido excesivo o a sustancias ototóxicas. En la actualidad no disponemos de tratamientos farmacológicos eficaces para prevenir o tratar la presbiacusia, por lo que la investigación en este campo es prioritaria. En este contexto, los modelos animales son una herramienta esencial para: a) identificar nuevos genes de presbiacusia, b) comprender las bases celulares y moleculares del envejecimiento auditivo, y c) definir nuevas dianas terapéuticas y evaluar posibles tratamientos.

Referencias bibliográficas

  • Attias, J., Zarchi, O., Nageris, B. I. & Laron, Z. (2012). Cochlear hearing loss in patients with Laron syndrome. Eur Arch Otorhinolaryngol, 269(2), 461–466. https://doi.org/10.1007/s00405-011-1668-x
  • Bai, U., Seidman, M. D., Hinojosa, R. & Quirk, W. S. (1997). Mitochondrial DNA deletions associated with aging and possibly presbycusis: A human archival temporal bone study. Am J Otol, 18(4), 449–453.
  • Bared, A., Ouyang, X., Angeli, S., Du, L. L., Hoang, K., Yan, D. & Liu, X. Z. (2010). Antioxidant enzymes, presbycusis, and ethnic variability. Otolaryngol Head Neck Surg, 143(2), 263–268. https://doi.org/10.1016/j.otohns.2010.03.024
  • Bermudez-Munoz, J. M., Celaya, A. M., Garcia-Mato, A., Munoz-Espin, D., Rodriguez-de la Rosa, L., Serrano, M. & Varela-Nieto, I. (2021). Dual-Specificity Phosphatase 1 (DUSP1) Has a Central Role in Redox Homeostasis and Inflammation in the Mouse Cochlea. Antioxidants (Basel), 10(9), 1351. https://doi.org/10.3390/antiox10091351
  • Besser, J., Stropahl, M., Urry, E. & Launer, S. (2018). Comorbidities of hearing loss and the implications of multimorbidity for audiological care. Hear Res, 369, 3–14. https://doi.org/10.1016/j.heares.2018.06.008
  • Botto, C., Dalkara, D. & El-Amraoui, A. (2021). Progress in Gene Editing Tools and Their Potential for Correcting Mutations Underlying Hearing and Vision Loss. Front Genome Ed, 3, 737632. https://doi.org/10.3389/fgeed.2021.737632
  • Bowl, M. R. & Dawson, S. J. (2015). The mouse as a model for age-related hearing loss—A mini-review. Gerontology, 61(2), 149–157. https://doi.org/10.1159/000368399
  • Calvino, M., Sanchez-Cuadrado, I., Gavilan, J., Gutierrez-Revilla, M. A., Polo, R. & Lassaletta, L. (2022). Effect of cochlear implantation on cognitive decline and quality of life in younger and older adults with severe-to-profound hearing loss. Eur Arch Otorhinolaryngol. https://doi.org/10.1007/s00405-022-07253-6
  • Camarero, G., Villar, M. A., Contreras, J., Fernandez-Moreno, C., Pichel, J. G., Avendano, C. & Varela-Nieto, I. (2002). Cochlear abnormalities in insulin-like growth factor-1 mouse mutants. Hear Res, 170(1–2), 2–11. https://doi.org/10.1016/s0378-5955(02)00447-1
  • Cediel, R., Riquelme, R., Contreras, J., Diaz, A. & Varela-Nieto, I. (2006). Sensorineural hearing loss in insulin-like growth factor I-null mice: A new model of human deafness. Eur J Neurosci, 23(2), 587–590. https://doi.org/10.1111/j.1460-9568.2005.04584.x
  • Celaya, A. M., Rodriguez-de la Rosa, L., Bermudez-Munoz, J. M., Zubeldia, J. M., Roma-Mateo, C., Avendano, C., Pallardo, F. V. & Varela-Nieto, I. (2021). IGF-1 Haploinsufficiency Causes Age-Related Chronic Cochlear Inflammation and Increases Noise-Induced Hearing Loss. Cells, 10(7). https://doi.org/10.3390/cells10071686
  • Celaya, A. M., Sanchez-Perez, I., Bermudez-Munoz, J. M., Rodriguez-de la Rosa, L., Pintado-Berninches, L., Perona, R., Murillo-Cuesta, S. & Varela-Nieto, I. (2019). Deficit of mitogen-activated protein kinase phosphatase 1 (DUSP1) accelerates progressive hearing loss. Elife, 8, 39159. https://doi.org/10.7554/eLife.39159
  • Di Stazio, M., Morgan, A., Brumat, M., Bassani, S., Dell’Orco, D., Marino, V., Garagnani, P., Giuliani, C., Gasparini, P. & Girotto, G. (2020). New age-related hearing loss candidate genes in humans: An ongoing challenge. Gene, 742, 144561. https://doi.org/10.1016/j.gene.2020.144561
  • Durga, J., Verhoef, P., Anteunis, L. J., Schouten, E. & Kok, F. J. (2007). Effects of folic acid supplementation on hearing in older adults: A randomized, controlled trial. Ann Intern Med, 146(1), 1–9. https://doi.org/10.7326/0003-4819-146-1-200701020-00003
  • Espino Guarch, M., Font-Llitjós, M., Murillo-Cuesta, S., Errasti- Murugarren, E., Celaya, A. M., Girotto, G., Vuckovic, D., Mezzavilla, M., Vilches, C., Bodoy, S., Sahún, I., González, L., Prat, E., Zorzano, A., Dierssen, M., Varela-Nieto, I., Gasparini, P., Palacín, M. & Nunes, V. (2018). Mutations in L-type amino acid transporter-2 support SLC7A8 as a novel gene involved in age-related hearing loss. ELife, 7, 31511. https://doi.org/10.7554/eLife.31511.028
  • Fetoni, A. R., Zorzi, V., Paciello, F., Ziraldo, G., Peres, C., Raspa, M., Scavizzi, F., Salvatore, A. M., Crispino, G., Tognola, G., Gentile, G., Spampinato, A. G., Cuccaro, D., Guarnaccia, M., Morello, G., Van Camp, G., Fransen, E., Brumat, M., Girotto, G., … Mammano, F. (2018). Cx26 partial loss causes accelerated presbycusis by redox imbalance and dysregulation of Nfr2 pathway. Redox Biol, 19, 301–317. https://doi.org/10.1016/j.redox.2018.08.002
  • Fransen, E., Bonneux, S., Corneveaux, J. J., Schrauwen, I., Di Berardino, F., White, C. H., Ohmen, J. D., Van de Heyning, P., Ambrosetti, U., Huentelman, M. J., Van Camp, G. & Friedman, R. A. (2015). Genome-wide association analysis demonstrates the highly polygenic character of age-related hearing impairment. Eur J Hum Genet, 23(1), 110–115. https://doi.org/10.1038/ejhg.2014.56
  • Friedman, R. A., Van Laer, L., Huentelman, M. J., Sheth, S. S., Van Eyken, E., Corneveaux, J. J., Tembe, W. D., Halperin, R. F., Thorburn, A. Q., Thys, S., Bonneux, S., Fransen, E., Huyghe, J., Pyykko, I., Cremers, C. W., Kremer, H., Dhooge, I., Stephens, D., Orzan, E., … Van Camp, G. (2009). GRM7 variants confer susceptibility to age-related hearing impairment. Hum Mol Genet, 18(4), 785–796. https://doi.org/10.1093/hmg/ddn402
  • Girotto, G., Pirastu, N., Sorice, R., Biino, G., Campbell, H., d’Adamo, A. P., Hastie, N. D., Nutile, T., Polasek, O., Portas, L., Rudan, I., Ulivi, S., Zemunik, T., Wright, A. F., Ciullo, M., Hayward, C., Pirastu, M. & Gasparini, P. (2011). Hearing function and thresholds: A genome-wide association study in European isolated populations identifies new loci and pathways. J Med Genet, 48(6), 369–374. https://doi.org/10.1136/jmg.2010.088310
  • Hoffmann, T. J., Keats, B. J., Yoshikawa, N., Schaefer, C., Risch, N. & Lustig, L. R. (2016). A Large Genome-Wide Association Study of Age-Related Hearing Impairment Using Electronic Health Records. PLoS Genet, 12(10), e1006371 https://doi.org/10.1371/journal.pgen.1006371
  • Holme, R. H. & Steel, K. P. (2004). Progressive hearing loss and increased susceptibility to noise-induced hearing loss in mice carrying a Cdh23 but not a Myo7a mutation. J Assoc Res Otolaryngol, 5(1), 66–79. https://doi.org/10.1007/s10162-003-4021-2
  • Huang, S., Xu, A., Sun, X., Shang, W., Zhou, B., Xie, Y., Zhao, M., Li, P., Lu, P., Liu, T. & Han, F. (2020). Otoprotective Effects of alpha-lipoic Acid on A/J Mice With Age-related Hearing Loss. Otol Neurotol, 41(6), e648–e654. https://doi.org/10.1097/MAO.0000000000002643
  • Ivarsdottir, E. V., Holm, H., Benonisdottir, S., Olafsdottir, T., Sveinbjornsson, G., Thorleifsson, G., Eggertsson, H. P., Halldorsson, G. H., Hjorleifsson, K. E., Melsted, P., Gylfason, A., Arnadottir, G. A., Oddsson, A., Jensson, B. O., Jonasdottir, A., Jonasdottir, A., Juliusdottir, T., Stefansdottir, L., Tragante, V., … Stefansson, K. (2021). The genetic architecture of age-related hearing impairment revealed by genome-wide association analysis. Commun Biol, 4(1), 706. https://doi.org/10.1038/s42003-021-02224-9
  • Joo, Y., Cruickshanks, K. J., Klein, B. E. K., Klein, R., Hong, O. & Wallhagen, M. I. (2020). The Contribution of Ototoxic Medications to Hearing Loss Among Older Adults. J Gerontol A Biol Sci Med Sci, 75(3), 561–566. https://doi.org/10.1093/gerona/glz166
  • Kim, S. Y., Lim, J. S., Kong, I. G. & Choi, H. G. (2018). Hearing impairment and the risk of neurodegenerative dementia: A longitudinal follow-up study using a national sample cohort. Sci Rep, 8(1), 15266. https://doi.org/10.1038/s41598-018-33325-x
  • Kuo, P. L., Moore, A. Z., Lin, F. R. & Ferrucci, L. (2021). Epigenetic Age Acceleration and Hearing: Observations From the Baltimore Longitudinal Study of Aging. Front Aging Neurosci, 13, 790926. https://doi.org/10.3389/fnagi.2021.790926
  • Kytövuori, L., Hannula, S., Mäki-Torkko, E., Sorri, M. & Majamaa, K. (2017). A nonsynonymous mutation in the WFS1 gene in a Finnish family with age-related hearing impairment. Hearing Research, 355, 97–101. https://doi.org/10.1016/j.heares.2017.09.013
  • Lassale, C., Batty, G. D., Steptoe, A. & Zaninotto, P. (2017). Insulin-like Growth Factor 1 in relation to future hearing impairment: Findings from the English Longitudinal Study of Ageing. Sci Rep, 7(1), 4212. https://doi.org/10.1038/s41598-017-04526-7
  • Lavinsky, J., Ge, M., Crow, A. L., Pan, C., Wang, J., Salehi, P., Myint, A., Eskin, E., Allayee, H., Lusis, A. J. & Friedman, R. A. (2016). The Genetic Architecture of Noise-Induced Hearing Loss: Evidence for a Gene-by-Environment Interaction. G3 (Bethesda), 6(10), 3219–3228. https://doi.org/10.1534/g3.116.032516
  • Liberman, M. C. (2017). Noise-induced and age-related hearing loss: New perspectives and potential therapies. F1000Res, 6, 927. https://doi.org/10.12688/f1000research.11310.1
  • Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. (2013). The hallmarks of aging. Cell, 153(6), 1194–1217. https://doi.org/10.1016/j.cell.2013.05.039
  • Maharani, A., Dawes, P., Nazroo, J., Tampubolon, G., Pendleton, N. & group, S. E.-C. W. (2018). Longitudinal Relationship Between Hearing Aid Use and Cognitive Function in Older Americans. J Am Geriatr Soc, 66(6), 1130–1136. https://doi.org/10.1111/jgs.15363
  • Manche, S. K., Jangala, M., Dudekula, D., Koralla, M. & Akka, J. (2018). Polymorphisms in folate metabolism genes are associated with susceptibility to presbycusis. Life Sci, 196, 77–83. https://doi.org/10.1016/j.lfs.2018.01.015
  • Marie, A., Larroze-Chicot, P., Cosnier-Pucheu, S. & Gonzalez-Gonzalez, S. (2017). Senescence-accelerated mouse prone 8 (SAMP8) as a model of age-related hearing loss. Neurosci Lett, 656, 138–143. https://doi.org/10.1016/j.neulet.2017.07.037
  • Marie, A., Meunier, J., Brun, E., Malmstrom, S., Baudoux, V., Flaszka, E., Naert, G., Roman, F., Cosnier-Pucheu, S. & Gonzalez-Gonzalez, S. (2018). N-acetylcysteine Treatment Reduces Age-related Hearing Loss and Memory Impairment in the Senescence-Accelerated Prone 8 (SAMP8) Mouse Model. Aging Dis, 9(4), 664–673. https://doi.org/10.14336/AD.2017.0930
  • Martinez-Vega, R., Garrido, F., Partearroyo, T., Cediel, R., Zeisel, S. H., Martinez-Alvarez, C., Varela-Moreiras, G., Varela-Nieto, I. & Pajares, M. A. (2015). Folic acid deficiency induces premature hearing loss through mechanisms involving cochlear oxidative stress and impairment of homocysteine metabolism. FASEB J, 29(2), 418–432. https://doi.org/10.1096/fj.14-259283
  • Martinez-Vega, R., Partearroyo, T., Vallecillo, N., Varela-Moreiras, G., Pajares, M. A. & Varela-Nieto, I. (2015). Long-term omega-3 fatty acid supplementation prevents expression changes in cochlear homocysteine metabolism and ameliorates progressive hearing loss in C57BL/6J mice. J Nutr Biochem, 26(12), 1424–1433. https://doi.org/10.1016/j.jnutbio.2015.07.011
  • Momi, S. K., Wolber, L. E., Fabiane, S. M., MacGregor, A. J. & Williams, F. M. (2015). Genetic and Environmental Factors in Age-Related Hearing Impairment. Twin Res Hum Genet, 18(4), 383–392. https://doi.org/10.1017/thg.2015.35
  • Muderris, T., Yar Saglam, A. S., Unsal, D., Mulazimoglu, S., Sevil, E. & Kayhan, H. (2022). Efficiency of resveratrol in the prevention and treatment of age-related hearing loss. Exp Ther Med, 23(1), 40. https://doi.org/10.3892/etm.2021.10962. PMID: 34849155
  • Nagtegaal, A. P., Broer, L., Zilhao, N. R., Jakobsdottir, J., Bishop, C. E., Brumat, M., Christiansen, M. W., Cocca, M., Gao, Y., Heard-Costa, N. L., Evans, D. S., Pankratz, N., Pratt, S. R., Price, T. R., Spankovich, C., Stimson, M. R., Valle, K., Vuckovic, D., Wells, H., … Goedegebure, A. (2019). Genome-wide association meta-analysis identifies five novel loci for age-related hearing impairment. Sci Rep, 9(1), 15192. https://doi.org/10.1038/s41598-019-51630-x
  • Newman, D. L., Fisher, L. M., Ohmen, J., Parody, R., Fong, C. T., Frisina, S. T., Mapes, F., Eddins, D. A., Robert Frisina, D., Frisina, R. D. & Friedman, R. A. (2012). GRM7 variants associated with age-related hearing loss based on auditory perception. Hear Res, 294(1–2), 125–132. https://doi.org/10.1016/j.heares.2012.08.016
  • Noben-Trauth, K., Zheng, Q. Y. & Johnson, K. R. (2003). Association of cadherin 23 with polygenic inheritance and genetic modification of sensorineural hearing loss. Nat Genet, 35(1), 21–23. https://doi.org/10.1038/ng1226
  • Nolan, L. S., Cadge, B. A., Gomez-Dorado, M. & Dawson, S. J. (2013). A functional and genetic analysis of SOD2 promoter variants and their contribution to age-related hearing loss. Mech Ageing Dev, 134(7–8), 298–306. https://doi.org/10.1016/j.mad.2013.02.009
  • Nolan, L. S., Maier, H., Hermans-Borgmeyer, I., Girotto, G., Ecob, R., Pirastu, N., Cadge, B. A., Hubner, C., Gasparini, P., Strachan, D. P., Davis, A. & Dawson, S. J. (2013). Estrogen-related receptor gamma and hearing function: Evidence of a role in humans and mice. Neurobiol Aging, 34(8), 2077 e1-9. https://doi.org/10.1016/j.neurobiolaging.2013.02.009
  • Nourbakhsh, A., Colbert, B. M., Nisenbaum, E., El-Amraoui, A., Dykxhoorn, D. M., Koehler, K. R., Chen, Z. Y. & Liu, X. Z. (2021). Stem Cells and Gene Therapy in Progressive Hearing Loss: The State of the Art. J Assoc Res Otolaryngol, 22(2), 95–105. https://doi.org/10.1007/s10162-020-00781-0
  • O’Grady, G., Boyles, A. L., Speer, M., DeRuyter, F., Strittmatter, W. & Worley, G. (2007). Apolipoprotein E alleles and sensorineural hearing loss. Int J Audiol, 46(4), 183–186. https://doi.org/10.1080/14992020601145294
  • Olusanya, B. O., Davis, A. C. & Hoffman, H. J. (2019). Hearing loss grades and the International classification of functioning, disability and health. Bull World Health Organ, 97(10), 725–728. https://doi.org/10.2471/BLT.19.230367
  • Pak, J. H., Kim, Y., Yi, J. & Chung, J. W. (2020). Antioxidant Therapy against Oxidative Damage of the Inner Ear: Protection and Preconditioning. Antioxidants (Basel), 9(11), 1076. https://doi.org/10.3390/antiox9111076
  • Panza, F., Solfrizzi, V. & Logroscino, G. (2015). Age-related hearing impairment-a risk factor and frailty marker for dementia and AD. Nat Rev Neurol, 11(3), 166–175. https://doi.org/10.1038/nrneurol.2015.12
  • Paplou, V., Schubert, N. M. A. & Pyott, S. J. (2021). Age-Related Changes in the Cochlea and Vestibule: Shared Patterns and Processes. Front Neurosci, 15, 680856. https://doi.org/10.3389/fnins.2021.680856
  • Partearroyo, T., Vallecillo, N., Pajares, M. A., Varela-Moreiras, G. & Varela-Nieto, I. (2017). Cochlear Homocysteine Metabolism at the Crossroad of Nutrition and Sensorineural Hearing Loss. Front Mol Neurosci, 10, 107. https://doi.org/10.3389/fnmol.2017.00107
  • Polanski, J. F. & Cruz, O. L. (2013). Evaluation of antioxidant treatment in presbyacusis: Prospective, placebo-controlled, double-blind, randomised trial. J Laryngol Otol, 127(2), 134–141. https://doi.org/10.1017/S0022215112003118
  • Prado-Barreto, V. M., Salvatori, R., Santos Junior, R. C., Brandao-Martins, M. B., Correa, E. A., Garcez, F. B., Valenca, E. H., Souza, A. H., Pereira, R. M., Nunes, M. A., D’Avila, J. S. & Aguiar-Oliveira, M. H. (2014). Hearing status in adult individuals with lifetime, untreated isolated growth hormone deficiency. Otolaryngol Head Neck Surg, 150(3), 464–471. https://doi.org/10.1177/0194599813517987
  • Rai, V., Tu, S., Frank, J. R. & Zuo, J. (2021). Molecular Pathways Modulating Sensory Hair Cell Regeneration in Adult Mammalian Cochleae: Progress and Perspectives. Int J Mol Sci, 23(1). https://doi.org/10.3390/ijms23010066
  • Riquelme, R., Cediel, R., Contreras, J., la Rosa Lourdes, R. D., Murillo-Cuesta, S., Hernandez-Sanchez, C., Zubeldia, J. M., Cerdan, S. & Varela-Nieto, I. (2010). A comparative study of age-related hearing loss in wild type and insulin-like growth factor I deficient mice. Front Neuroanat, 4, 27. https://doi.org/10.3389/fnana.2010.00027
  • Schuknecht, H. F. & Gacek, M. R. (1993). Cochlear pathology in presbycusis. Ann Otol Rhinol Laryngol, 102(1 Pt 2), 1–16. https://doi.org/10.1177/00034894931020S101
  • Sugiura S, Uchida Y, Nakashima T, Ando F, Shimokata H. (2010). The association between gene polymorphisms in uncoupling proteins and hearing impairment in Japanese elderly. Acta Otolaryngol., 130(4), 487-492. https://doi.org/10.3109/00016480903283758. PMID: 19895332.
  • Takumida, M. & Anniko, M. (2009). Radical scavengers for elderly patients with age-related hearing loss. Acta Otolaryngol, 129(1), 36–44. https://doi.org/10.1080/00016480802008215
  • Uchida Y, Sugiura S, Ueda H, Nakashima T, Ando F, Shimokata H. (2014). The association between hearing impairment and polymorphisms of genes encoding inflammatory mediators in Japanese aged population. Immun Ageing, 11(1), 18. https://doi.org/10.1186/s12979-014-0018-4. PMID: 25469152; PMCID: PMC4252019
  • Uchida, Y., Sugiura, S., Ando, F., Nakashima, T. & Shimokata, H. (2011). Hearing impairment risk and interaction of folate metabolism related gene polymorphisms in an aging study. BMC Med Genet, 12(1), 35. https://doi.org/10.1186/1471-2350-12-35
  • Uchida, Y., Sugiura, S., Nakashima, T., Ando, F. & Shimokata, H. (2009). Endothelin-1 gene polymorphism and hearing impairment in elderly Japanese. Laryngoscope, 119(5), 938–943. https://doi.org/10.1002/lary.20181
  • Unal, M., Tamer, L., Dogruer, Z. N., Yildirim, H., Vayisoglu, Y. & Camdeviren, H. (2005). N-acetyltransferase 2 gene polymorphism and presbycusis. Laryngoscope, 115(12), 2238–2241. https://doi.org/10.1097/01.mlg.0000183694.10583.12
  • Van Eyken, E., Van Camp, G., Fransen, E., Topsakal, V., Hendrickx, J. J., Demeester, K., Van de Heyning, P., Maki-Torkko, E., Hannula, S., Sorri, M., Jensen, M., Parving, A., Bille, M., Baur, M., Pfister, M., Bonaconsa, A., Mazzoli, M., Orzan, E., Espeso, A., … Van Laer, L. (2007). Contribution of the N-acetyltransferase 2 polymorphism NAT2*6A to age-related hearing impairment. J Med Genet, 44(9), 570–578. https://doi.org/10.1136/jmg.2007.049205
  • Van Eyken, E., Van Laer, L., Fransen, E., Topsakal, V., Lemkens, N., Laureys, W., Nelissen, N., Vandevelde, A., Wienker, T., Van De Heyning, P. & Van Camp, G. (2006). KCNQ4: A gene for age-related hearing impairment? Hum Mutat, 27(10), 1007–1016. https://doi.org/10.1002/humu.20375
  • Van Laer, L., Huyghe, J. R., Hannula, S., Van Eyken, E., Stephan, D. A., Maki-Torkko, E., Aikio, P., Fransen, E., Lysholm-Bernacchi, A., Sorri, M., Huentelman, M. J. & Van Camp, G. (2010). A genome-wide association study for age-related hearing impairment in the Saami. Eur J Hum Genet, 18(6), 685–693. https://doi.org/10.1038/ejhg.2009.234
  • Van Laer, L., Van Eyken, E., Fransen, E., Huyghe, J. R., Topsakal, V., Hendrickx, J. J., Hannula, S., Maki-Torkko, E., Jensen, M., Demeester, K., Baur, M., Bonaconsa, A., Mazzoli, M., Espeso, A., Verbruggen, K., Huyghe, J., Huygen, P., Kunst, S., Manninen, M., … Van Camp, G. (2008). The grainyhead like 2 gene (GRHL2), alias TFCP2L3, is associated with age-related hearing impairment. Hum Mol Genet, 17(2), 159–169. https://doi.org/10.1093/hmg/ddm292
  • Vuckovic, D., Dawson, S., Scheffer, D. I., Rantanen, T., Morgan, A., Di Stazio, M., Vozzi, D., Nutile, T., Concas, M. P., Biino, G., Nolan, L., Bahl, A., Loukola, A., Viljanen, A., Davis, A., Ciullo, M., Corey, D. P., Pirastu, M., Gasparini, P. & Girotto, G. (2015). Genome-wide association analysis on normal hearing function identifies PCDH20 and SLC28A3 as candidates for hearing function and loss. Hum Mol Genet, 24(19), 5655–5664. https://doi.org/10.1093/hmg/ddv279
  • Wang, J. & Puel, J. L. (2020). Presbycusis: An Update on Cochlear Mechanisms and Therapies. J Clin Med, 9(1), 218. https://doi.org/10.3390/jcm9010218
  • Wesdorp, M., Murillo-Cuesta, S., Peters, T., Celaya, A. M., Oonk, A., Schraders, M., Oostrik, J., Gomez-Rosas, E., Beynon, A. J., Hartel, B. P., Okkersen, K., Koenen, H., Weeda, J., Lelieveld, S., Voermans, N. C., Joosten, I., Hoyng, C. B., Lichtner, P., Kunst, H. P. M., … Kremer, H. (2018). MPZL2, Encoding the Epithelial Junctional Protein Myelin Protein Zero-like 2, Is Essential for Hearing in Man and Mouse. Am J Hum Genet, 103(1), 74–88. https://doi.org/10.1016/j.ajhg.2018.05.011
  • Wolber, L. E., Girotto, G., Buniello, A., Vuckovic, D., Pirastu, N., Lorente-Canovas, B., Rudan, I., Hayward, C., Polasek, O., Ciullo, M., Mangino, M., Steves, C., Concas, M. P., Cocca, M., Spector, T. D., Gasparini, P., Steel, K. P. & Williams, F. M. (2014). Salt-inducible kinase 3, SIK3, is a new gene associated with hearing. Hum Mol Genet, 23(23), 6407–6418. https://doi.org/10.1093/hmg/ddu346
  • World Health Organization. (2021). World Hearing Report (No. 9789240020481). https://www.who.int/publications/i/item/world-report-on-hearing