Diseño y aplicación de receptores moleculares bioinspirado en la naturaleza anfótera del anillo del imidazol

  1. Alfonso Navarro, Maria
Dirigida por:
  1. Pedro Molina Buendía Director/a
  2. Alberto Tárraga Tomás Director/a

Universidad de defensa: Universidad de Murcia

Fecha de defensa: 26 de enero de 2016

Tribunal:
  1. Tomás Torres Cebada Presidente/a
  2. Antonio Caballero Pérez Secretario/a
  3. Nazario Martín León Vocal

Tipo: Tesis

Resumen

El desarrollo de quimiosensores para la detección eficaz de aniones y cationes es un área de gran relevancia en el campo de la Química Supramolecula, debido al importante papel que juegan estas especies en procesos biológicos, ambientales y químicos. Paralelamente, ha ido emergiendo el diseño y aplicación de los receptores heteroditópicos preorganizados para la detección simultánea de especies aniónicas y catiónicas. Dentro de este contexto, los objetivos de esta tesis doctoral se centran en el diseño, síntesis y estudio del comportamiento sensor de diferentes tipos de receptores aza-heterocíclicos que contienen una unidad de señalización y, al menos, un anillo de imidazol como unidad de reconocimiento, covalentemente unidos. Además, la fusión angular de unidades azaheterocíclicas adicionales al imidazol permiten mejorar la capacidad de reconocimiento de estos receptores poli-azaheterocíclicos. Así, el primer objetivo de esta tesis está relacionado con el diseño y estudio de un receptor basado en el ferroceono en el que éste se encuentra unido a una unidad imidazo[4,5-f]quinoxalina. La fusión angular de la quinoxalina al anillo de imidazol genera una cavidad en la que los átomos de nitrógeno de ambos anillos pueden cooperar en el reconocimiento de cationes, mientras que el grupo NH del imidazol quedaría disponible para el reconocimiento de aniones. Este receptor, se comporta como sensor electroquímico y colorimétrico de cationes Zn2+, Cd2+, Hg2+ y Pb2+. El siguiente objetivo trata de la síntesis y estudio de 2-ferrocenil-1H-imidazo[4,5-f]quinoxalinas 7,8-disustituidas que contienen grupos fenilo, piridilo, furanilo o tiofenilo. El receptor difenil-sustituido se comporta como sensor redox, cromogénico y fluorescente selectivo de catión Pb2+, mientras que el receptor dipiridil-sustituido muestra capacidad para detectar selectivamente cationes Hg2+. Por otro lado, la funcionalización de la quinoxalina con anillos de tiofeno o furano contribuye a mejorar la eficacia del reconocimiento. Ambos receptores muestran una mayor afinidad por los aniones HSO4- y H2PO4- en presencia de los cationes Zn2+, Pb2+, Cd2+, Mg2+ o Ni2+. Se comportan como sensores de pares iónicos mediante una fuerte perturbación de su potencial redox y un incremento significativo de la intensidad de emisión. El siguiente objetivo propuesto se basa en la fusión de fenantreno, fenantrolina o pireno al sistema imidazoquinoxalina, para mejorar la selectividad y sensibilidad de los anteriores receptores. Así, los receptores derivados de las unidades dipirido-imidazo-fenacina e imidazo-fenantro-fenacina actúan como sensores selectivos redox, colorimétricos y fluorescentes de Hg2+, mientras que el derivado de la unidad dibenzo-imidazo-fenacina actúa como sensor altamente selectivo de Pb2+ en una mezcla acuo-orgánica. Además, se han sintetizado otros receptores 2-ferrocenil-benzobisimidazol 7-sustituidos por otra unidad de ferroceno, 2,4-dinitrobenceno o pireno. El receptor 2,7-ferrocenil disustiutuido actúa como sensor redox y fluorescente selectivo de Hg2+ y HSO4-. Por otro lado, el receptor ferrocenil-2,4-dinitrofenilo-bisimidazol se comporta como sensor redox y cromogénico de AcO-, H2PO4- y SO42- y los cationes Zn2+, Pb2+ y Hg2+, permitiendo la detección "a simple vista". Por último, el ferroceil-pirenil-bisimidazol muestra un fuerte incremento de la intensidad de emisión en presencia de anión H2PO4-. Además, se ha descrito un receptor altamente preorganizado que combina las propiedades redox del ferroceno, las propiedades fotoemisivas del pireno y la capacidad coordinativa del anillo de imidazol. Esta diada ferrocenil-imidazopireno se comporta como sensor de pares iónicos separado, ya que es capaz de detectar un catión y un anión simultáneamente a través de dos canales: electroquímico y fluorescente. Finalmente, se ha descrito una familia de receptores basados en la unidad imidazo[4,5-e]-2,1,3-benzotiadiazol, diferentemente funcionalizados con otros anillos azaheterocíclicos con objeto de mejorar las propiedades frente al reconocimiento (pirrol, piridina, imidazol) o el carácter luminiscente (7-azaindol, benzo[g]indol). Esta familia de receptores exhibe un marcado solvatofluorocromismo y una intensa fluorescencia tanto en estado sólido como en disolución. Además, el receptor sustituido con una unidad de pirrol actúa como sensor luminiscente de compuestos nitroaromáticos, en particular, presenta una respuesta selectiva hacia el ácido pícrico. Por otro lado, el receptor funcionalizado con una unidad de piridina se comporta como sensor de las sales de Cd(AcO)2 y Zn(AcO)2 tanto en disolución como en estado sólido. Curiosamente, la formación de estos complejos en disolución permite la extracción selectiva de la sal de Zn2+ en presencia de la sal de Cd2+ tanto en disolución de cloroformo como en éter etílico.