Robust approach for comparing two dependent normal populations through Wald-type tests based on Rényi’s pseudodistance estimators
- Castilla, Elena
- Jaenada, María
- Martín, Nirian
- Pardo, Leandro
ISSN: 0960-3174, 1573-1375
Datum der Publikation: 2022
Ausgabe: 32
Nummer: 6
Art: Artikel
Andere Publikationen in: Statistics and Computing
Zusammenfassung
Since the two seminal papers by Fisher (Biometrika 10:507–521, 1915; Metron 1:1–32, 1921) were published, the test under a fixed value correlation coefficient null hypothesis for the bivariate normal distribution constitutes an important statistical problem. In the framework of asymptotic robust statistics, it remains being a topic of great interest to be investigated. For this and other tests, focused on paired correlated normal random samples, Rényi’s pseudodistance estimators are proposed, their asymptotic distribution is established and an iterative algorithm is provided for their computation. From them the Wald-type test statistics are constructed for different problems of interest and their influence function is theoretically studied. For testing null correlation in different contexts, an extensive simulation study and two real data based examples support the robust properties of our proposal
Informationen zur Finanzierung
Geldgeber
-
Ministerio de Ciencia, Innovación y Universidades
- PGC2018-095 194-B-100
-
Ministerio de Educación, Cultura y Deporte
- FPU 19/01824
Bibliographische Referenzen
- Anderson, T.W.: An Introduction to Multivariate Statistical Analysis, 3rd edn. Wiley, New York (2003)
- Basak, S., Basu, A., Jones, M.C.: On the optimal density power divergence tuning parameter. J. Appl. Stat. 48(3), 536–556 (2021)
- Basu, A., Shioya, H., Park, C.: Statistical Inference: The Minimum Distance Approach. Chapman & Hall, Boca Raton (2011)
- Beran, R.: Minimum Hellinger distance estimates for parametric models. Ann. Stat. 5, 445–463 (1977)
- Broniatowski, M., Toma, A., Vajda, I.: Decomposable pseudodistances and applications in statistical estimation. J. Stat. Plan. Inference 142, 2574–2585 (1961)
- Castilla, E., Martin, N., Muñoz, S., Pardo, L.: Robust Wald-type tests based on minimum Rényi pseudodistance estimators for the multiple linear regression model. J. Stat. Comput. Simul. 90, 2655–2680 (2020a)
- Castilla, E., Ghosh, A., Jaenada, M., Pardo, L.: On Regularization Methods Based on Renyi’s Pseudodistances for Sparse High-Dimensional Linear Regression Models. arXiv:2007.15929 (2020b)
- Castilla, E., Jaenada, M., Pardo, L.: Estimation and testing on independent not identically distributed observations based on Renyi’s pseudodistances. IEEE Trans. Inf. Theory 68(7) (2022)
- Chernick, M.R.: The influence function and its application to data validation. Am. J. Math. Manag. Sci. 2(4), 263–288 (1982)
- Devlin, S.J., Gnanadesikan, R., Kettering, J.R.: Robust estimation and outlier detection with correlation coefficients. Biometrika 62, 531–545 (1975)
- Fisher, R.A.: Frequency-distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika 10, 507–521 (1915)
- Fisher, R.A.: On the “probable error’’ of a coefficient of correlation deduced from a small sample. Metron 1, 1–32 (1921)
- Fujisawa, H., Eguchi, S.: Robust parameter estimation with a small bias against contamination. J. Multivar. Anal. 99, 2053–2081 (2008)
- Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., Stahel, W.A.: Robust Statistics: The Approach Based on Influence Functions. Wiley, New York (1986)
- Hsu, C.T.: On samples from a normal bivariate population. Ann. Math. Stat. 11, 410–426 (1940)
- Hutson, A.D.: A robust Pearson correlation test for a general point null using a surrogate bootstrap distribution. PLoS ONE 14(5), e0216287 (2019)
- Isogai, T.: On using influence functions for testing multivariate normality. Ann. Inst. Stat. Math. 41(1), 169–186 (1989)
- Jaenada M., Pardo L.: The minimum Rényi’s pseudodistances estimators for generalized linear models. In: Data Analysis and Related Applications: Theory and Practice, Proceeding of the ASMDA. Wiley, Athens (2021)
- Jaenada, M., Pardo, L.: Robust statistical inference in generalized linear models based on minimum Rényi’s pseudodistance estimators. Entropy 24, 123 (2022)
- Jones, M.C., Hjort, N.L., Harris, I.R., Basu, A.: A comparison of related density-based minimum divergence estimators. Biometrika 88, 865–873 (2001)
- Lindsay, B.G.: Efficiency versus robustness: the case for minimum Hellinger distance and related methods. Ann. Stat. 22, 1081–1114 (1994)
- Little, R.J., Rubin, D.B.: Statistical Analysis with Missing Data, 3rd edn. Wiley, New York (2019)
- Martín, N.: Rao’s Score Tests on Correlation Matrices. arXiv:2012.14238 (2020)
- Morgan, W.A.: TA test for the significance of the difference between two variances in a sample from a normal bivariate population. Biometrika 31, 13–19 (1939)
- Pardo, L.: Statistical Inference Based on Divergence Measures. Chapman & Hall, Boca Raton (2006)
- Pitman, E.: A note on normal correlation. Biometrika 31, 9–12 (1939)
- R Core Team: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2020)
- Radhakrishnan, R., Kshirsagar, A.M.: Influence functions for certain parameters in multivariate analysis. Commun. Stati. A Theory Methods 10, 515–529 (1981)
- Rao, C.R.: Tests of significance in multivariate analysis. Biometrika 35, 58–79 (1948)
- Rényi, A.: On measures of entropy and information. In: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, pp. 547–561. University of California Press (1961)
- Serfling, R.J.: Approximation Theorems of Mathematical Statistics. Wiley, New York (1980)
- Simpson, D.G.: Minimum Hellinger distance estimation for the analysis of count data. J. Am. Stat. Assoc. 82(399), 802–807 (1989a)
- Simpson, D.G.: Hellinger deviance tests: efficiency, breakdown points, and examples. J. Am. Stat. Assoc. 84, 107–113 (1989b)
- Tamura, R.N., Boos, D.D.: Minimum Hellinger distance estimation for multivariate location and covariance. J. Am. Stat. Assoc. 81, 223–229 (1986)
- Toma, A., Leoni-Aubin, S.: Optimal robust M-estimators using Rényi pseudodistances. J. Multivar. Anal. 115, 259–273 (2013)
- Toma, A., Leoni-Aubin, S.: Robust portfolio optimization using pseudodistances. PLoS ONE 10(10), e0140546 (2015)
- Warwick, J., Jones, M.C.: Choosing a robustness tuning parameter. J. Stat. Comput. Simul. 75(7), 581–588 (2005)
- Wilcox, R.: Comparing the variances of two dependent variables. J. Stat. Distrib. Appl. 2, 7 (2015)
- Wilcox, R.: Understanding and Applying Basic Statistical Methods Using R. Wiley, New York (2016)