Electronic & ionic conduction & correlated dielectric relaxations in molecular solids

  1. ZACHARIAH, MANESH
Dirigida por:
  1. Roberto Macovez Director/a
  2. Josep Lluís Tamarit Mur Codirector/a

Universidad de defensa: Universitat Politècnica de Catalunya (UPC)

Fecha de defensa: 17 de noviembre de 2016

Tribunal:
  1. Daniel Crespo Artiaga Presidente/a
  2. Daniele Cangialosi Secretario/a
  3. Alberto Rivera Calzada Vocal

Tipo: Tesis

Teseo: 140246 DIALNET lock_openTDX editor

Resumen

El estudio de los materiales cristalinos juega un papel destacado en la física del estado sólido. Sin embargo, los materiales desordenados son más abundantes en la naturaleza que los cristalinos y, además, muchas de las aplicaciones prácticas utilizan materiales que son débilmente o fuertemente desordenados, como vidrios, líquidos, cristales plásticos, cristales moleculares, polímeros, o cristales líquidos. Desde un punto de vista fundamental, aún carecemos de una comprensión de de los materiales desordenados y de la transición vítrea: la comprensión de las propiedades asociadas desorden requiere el uso de conceptos que se alejan de los aplicables al estado cristalino. Desde una perspectiva aplicada, la investigación en los sólidos desordenados está promovida por la importancia tecnológica de estos materiales en la vida cotidiana. Los sólidos desordenados pueden conducir electricidad por transporte de electrones o de iones. En el primer caso, los materiales desordenados muestran menor conductividad que sus respectivas fases cristalinas, debido a la localización de los electrones de conducción por la existencia de desorden, que da lugar a saltos de electrones como principal mecanismo de transporte de carga. Por otro lado, el mismo desorden puede permitir la difusión de iones a través de intersticios; la conductividad iónica de materiales desordenados es más alta que sus fases homólogas cristalinas. Esta tesis presenta un estudio experimental de la conducción eléctrica y de la dinámica molecular de sólidos moleculares formados por derivados de fullereno (C60Br6, C60(ONa)24) o por moléculas con dos grupos nitrilos (succinonitrila (C2H4(CN)2), glutaronitrila (C3H6 (CN)2)). Estos materiales presentan, según el caso, conducción electrónica, protónica, o iónica. La tesis analiza los diferentes tipos de conducción de carga en materiales moleculares así como los procesos físicos relacionados, tales como las relajaciones de carga espacial. En el material C60Br6 observamos conducción electrónica tipo n y un comportamiento de fase no trivial. La dependencia de la conductividad con la temperatura está de acuerdo con el modelo de salto de rango variable (VRH). El C60(ONa)24 tiene un comportamiento de fase aún más rico. Se sintetiza como un hidrato policristalino, y se puede obtener como material puro por calentamiento. Mientras que el material puro es un semiconductor de tipo n, su exposición a una atmósfera húmeda aumenta la conductividad de forma dramática debido al transporte de carga a través de las capas de hidratación, lo que probablemente se debe a un mecanismo de intercambio de protones como en el agua pura o en el hielo. La conductividad del hidrato depende fuertemente de la temperatura en el proceso de deshidratación. Ambas formas, pura e hidratada, muestran un proceso dinámico asociado a la acumulación de electrones en los límites de grano. La presencia de agua tiene un fuerte impacto en tal proceso. Por último se analizan la dinámica molecular y la conductividad iónica de cristales plásticos, en particular, de las aleaciones moleculares en fase plástica formadas entre la succinonitrila y la glutaronitrila. En las fases plásticas las moléculas ocupan los sitios cristalográficos de la red, pero se encuentran orientacionalmente desordenadas. Se demuestra que las aleaciones succinonitrila-glutaronitrila son los primeros cristales plásticos que se conocen en los que existe una correlación perfecta entre la corriente de iones y la dinámica reorientational de las moléculas en los sitios cristalográficos. El dopaje de las aleaciones con sales de Li aumenta la conductividad pero destruye la correlación anterior, lo que indica que la correlación sólo es válida cuando el transporte de carga está dominado por la difusión de iones moleculares. Tal correlación puede ser consecuencia de una correlación entre las escalas de tiempo de rotación y de difusión.