Datación de carbonatos por el método de U/Thejemplos en España

  1. María Belén Muñoz-García 1
  2. Javier Martín-Chivelet 1
  1. 1 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

Revista:
Cuaternario y geomorfología: Revista de la Sociedad Española de Geomorfología y Asociación Española para el Estudio del Cuaternario

ISSN: 0214-1744

Año de publicación: 2022

Volumen: 36

Número: 3-4

Páginas: 201-224

Tipo: Artículo

DOI: 10.17735/CYG.V36I3-4.94555 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Cuaternario y geomorfología: Revista de la Sociedad Española de Geomorfología y Asociación Española para el Estudio del Cuaternario

Resumen

El método de U/Th permite datar materiales diversos de hasta 600.000 años de antigüedad. En este trabajo se revisan sus fundamentos y las técnicas analíticas disponibles, centrándose en su aplicación más habitual, que es la datación de carbonatos. En concreto, se discuten su potencial y limitaciones en la datación de espeleotemas, travertinos, calcretas, cementos, corales y moluscos aprovechando los ejemplos publicados en España. El cálculo de edades mediante U/Th se basa en la serie de desintegración del 238U e involucra medidas de 238U, 234U y 230Th. Su fundamento radica en el fraccionamiento entre los radionucleidos del uranio y del torio en los sistemas naturales. En el caso de la precipitación de carbonato puro, éste incorpora uranio en el momento de su formación, pero está libre de torio inicial de tal forma que, pasado un tiempo, todo el 230Th medido en la muestra deriva de la desintegración del 234U y esta relación permite calcular la edad de formación del mineral. Teóricamente, por tanto, el carbonato a datar: (1) debe incorporar cierta cantidad de uranio en el momento de su formación, (2) no debe incorporar cantidad significativa de torio y (3) debe comportarse como un sistema cerrado. De estas premisas, la segunda y la tercera no siempre se cumplen por lo que el método se ha adaptado a estos casos añadiendo cálculos y correcciones adicionales. Dada la variedad de carbonatos susceptibles de ser datados, este método es de amplia aplicación en paleoclimatología, paleontología, arqueología, estratigrafía, geomorfología, tectónica y oceanografía, entre otras disciplinas.

Referencias bibliográficas

  • Citas Alcaraz-Pelegrina, J.M., Martínez-Aguirre, A. (2007). U/Th dating of carbonate deposits from Constantina (Sevilla), Spain. Applied Radiation and Isotopes, 65(7), 798-804. https://doi.org/10.1016/j.apradiso.2007.01.006
  • Arenas, C., Vázquez-Urbez, M., Pardo, G., Sancho, C. (2014). Sedimentology and depositional architecture of tufas deposited in stepped fluvial systems of changing slope: Lessons from the Quaternary Añamaza valley (Iberian Range, Spain). Sedimentology, 61, 133–171. https://doi.org/10.1111/sed.12053
  • Arriolabengoa, M., Intxaurbe, I., Medina‐Alcaide, M.Á., Rivero, O., Rios‐Garaizar, J., LÍbano, I., Bilbao, P., Aranburu, A., Cheng, H., Edwards, R.L., Garate, D. (2020). From cave geomorphology to Palaeolithic human behaviour: speleogenesis, palaeoenvironmental changes and archaeological insight in the Atxurra-Armiña cave (northern Iberian Peninsula). Journal of Quaternary Science, 35(6) 841–853. https://doi.org/10.1002/jqs.3225
  • Arslanov, Kh.A., Tertychny, N.I., Kuznetsov, V.Yu., Chernov, S.B., Lokshin, N.V., Gerasimova, S.A., Maksikov, F.E., Dodonov, A.E. (2002). 230Th/U and 14C dating of mollusc shells from the coast of the Caspian, Barents, White and Black Seas. Geochronometria, 21, 49–56.
  • Arsuaga, J. L., Martínez, I., Arnold, L. J., Aranburu, A., Gracia-Téllez, A., Sharp, W. D., Quam, R. M., Falguères, C., Pantoja-Pérez, A., Bischoff, J., Poza-Rey, E., Parés, J. M., Carretero, J. M., Demuro, M., Lorenzo, C., Sala, N., Martinón-Torres, M., García, N., Alcázar De Velasco, A., … Carbonell, E. (2014). Neandertal roots: Cranial and chronological evidence from Sima de los Huesos. Science, 344(6190), 1358–1363. https://doi.org/10.1126/science.1253958
  • Bajo, P., Hellstrom, J., Frisia, S., Drysdale, R., Black, J., Woodhead, J., Borsato, A., Zanchetta, G., Wallace, M. W., Regattieri, E., Haese, R. (2016). “Cryptic” diagenesis and its implications for speleothem geochronologies. Quaternary Science Reviews, 148, 17–28. https://doi.org/10.1016/j.quascirev.2016.06.020
  • Baldini, J.U.L., Lechleitner, F.A., Breitenbach, S.F.M., Hunen, J., Baldini, L.M., Wynn, P.M., Jamieson, R.A., Ridley, H.E., Baker, A.J., Walczak, I.W., Fohlmeister, J. (2021). Detecting and quantifying palaeoseasonality in stalagmites using geochemical and modelling approaches. Quaternary Science Reviews, 254, 106784. https://doi.org/10.1016/j.quascirev.2020.106784
  • Ballesteros, D., Jiménez-Sánchez, M., Giralt, S., García-Sansegundo, J., Meléndez-Asensio, M. (2015). A multi-method approach for speleogenetic research on alpine karst caves. Torca La Texa shaft, Picos de Europa (Spain). Geomorphology, 247, 35–54. https://doi.org/10.1016/j.geomorph.2015.02.026
  • Barnes, J. W., Lang, E. J., Potratz, H. A. (1956). Ratio of Ionium to Uranium in Coral Limestone. Science, 124(3213), 175–176. https://doi.org/10.1126/science.124.3213.175.b
  • Bartolomé, M., Moreno, A., Sancho, C., Stoll, H.M., Cacho, I., Spötl, C., Belmonte, A., Edwards, R.L., Cheng, H., Hellstrom, J.C. (2015a). Hydrological change in Southern Europe responding to increasing North Atlantic overturning during Greenland Stadial 1. PNAS, 112(21), 6568–6572. https://doi.org/10. 1073/pnas.1503990112
  • Bartolomé, M., Sancho, C., Moreno, A., Oliva-Urcia, B., Belmonte, Bastida, J., Cheng, H., Edwards, R. L. (2015b). Upper Pleistocene interstratal piping-cave speleogenesis: The Seso cave system (Central Pyrenees, northern Spain). Geomorphology, 228, 335–344. https://doi.org/10.1016/j.geomorph.2014.09.007
  • Bartolomé, M., Benito, G., Luetscher, M., Badules-Iglesias, J., Pérez-Villar, G., Edwards, R.L., Moreno, A. (2021a). The potential of Ojo de Valjunquera cave (NE of Iberia) sediments for paleoflood reconstructions. Cuaternario y Geomorfología, 35 (3–4), 11–28. https://doi.org/10.17735/cyg.v35i3-4.89413
  • Bartolomé, M., Sancho, C., Benito, G., Medialdea, A., Calle, M., Moreno, A., Leunda, M., Luetscher, M., Muñoz, A., Bastida, J., Cheng, H., Edwards, R.L. (2021b). Effects of glaciation on karst hydrology and sedimentology during the Last Glacial Cycle: The case of Granito cave, Central Pyrenees (Spain). Catena, 206, 105252. https://doi.org/10.1016/j.catena.2021.105252
  • Bednarik, R. G. (2012). U-Th analysis and rock art: a response to Pike et al. Rock Art Research, 29(2), 244–246.
  • Bernal-Wormull, J.L., Moreno, A., Pérez-Mejías, C., Bartolomé, M., Aranburu, A., Arriolabengoa, M., Iriarte, E., Cacho, I., Spötl, C., Edwards, R.L., Cheng, H. (2021). Immediate temperature response in northern Iberia to last deglacial changes in the North Atlantic. Geology, 49, 999–1003. https://doi.org/10.1130/G48660.1
  • Bernat, M., Bousquet, J.-C., Dars, R. (1978). Io–U dating of the Ouljian stage from Torre Garcia (southern Spain). Nature, 275, 302–303. https://doi.org/10.1038/275302a0
  • Bischoff, J.L., Fitzpatrick, J.A. (1991). U-series dating of impure carbonates: an isochron technique using total-sample dissolution. Geochimica et Cosmochimica Acta, 55(2), 543-554. https://doi.org/10.1016/0016-7037(91)90011-S
  • Bischoff, J. L., Fitzpatrick, J. A., León, L., Arsuaga, J. L., Falgueres, C., Bahain, J. J., Bullen, T., de Los, S., Chamber, H., Mayor, C. (1997). Geology and preliminary dating of the hominid-bearing sedimentary fill of the Sima de los Huesos Chamber, Cueva Mayor of the Sierra de Atapuerca, Burgos, Spain. Journal of Human Evolution, Vol. 33. https://doi.org/10.1006/jhev.1997.0130
  • Bischoff, J. L., Shamp, D. D., Aramburu, A., Arsuaga, J. L., Carbonell, E., Bermudez de Castro, J. M. (2003). The Sima de los Huesos hominids date to beyond U/Th equilibrium (>350 kyr) and perhaps to 400-500 kyr: New radiometric dates. Journal of Archaeological Science, 30(3), 275–280. https://doi.org/10.1006/jasc.2002.0834
  • Bischoff, J. L., Williams, R. W., Rosenbauer, R. J., Aramburu, A., Arsuaga, J. L., García, N., Cuenca-Bescós, G. (2007). High-resolution U-series dates from the Sima de los Huesos hominids yields 600- 66+ ∞ kyrs: implications for the evolution of the early Neanderthal lineage. Journal of Archaeological Science, 34 (5), 763–770. https://doi.org/10.1016/j.jas.2006.08.003
  • Blackwell, B., Schwarcz, H.P. (1995). The Uranium series disequilibrium dating methods. En: Rutter, N.W. y Catto, N.R. (eds.) Dating methods for Quaternary deposits. GEOtext, Geological Association of Canada, Newfoundland, Canada. 167-208.
  • Bourdon, B., Turner, S., Henderson, G.M., Lundstrom, C.C. (2003a). Introduction to U-Series geochemistry. En: Applications of U-Series methodology (B. Bourdon, S. Turner, G.M. Henderson, C.C. Lundstrom, eds.). Reviews in Mineralogy and Geochemistry, 52(1). 1-21. https://doi.org/10.1515/9781501509308-006
  • Bourdon, B., Turner, S., Henderson, G.M., Lundstrom, C.C. (eds.) (2003b). Applications of U-Series methodology. Reviews in Mineralogy and Geochemistry, 52(1).
  • Candy, I., Black, S. (2009). The timing of Quaternary calcrete development in semi-arid southeast Spain: Investigating the role of climate on calcrete genesis. Sedimentary Geology, 218, 6-15. https://doi.org/10.1016/j.sedgeo.2009.03.005
  • Cheng, H., Edwards, R.L., Hoff, J., Gallup, C.D., Richards, D.A., Asmerom, Y. (2000). The half-lives of uranium-234 and thorium-230. Chemical Geology, 169, 17–33. https://doi.org/10.1016/S0009-2541(99)00157-6
  • Cheng, H., Edwards, R.L., Shen, C.C., Polyak, V.J., Asmerom, Y., Woodhead, J., Hellstrom, J., Wang, Y., Kong, X., Spötl, C., Wang, X., Alexander, E.C. Jr. (2013). Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth and Planetary Science Letters, 371-372, 82-91. https://doi.org/10.1016/j.epsl.2013.04.006
  • Cheng, H., Zhang, H., Spötl, C., Baker, J., Sinha, A., Li, H., Bartolomé, M., Moreno, A., Kathayat, G., Zhao, J., Dong, X., Li, Y., Ning, Y., Jia, X., Zong, B., Brahim, Y. A., Pérez-Mejias, A., Cai, Y., Novello, V.F., Cruz, F.W., Severinghaus, J.P., An, Z., Edwards, R.L. (2020). Timing and structure of the Younger Dryas event and its underlying climate dynamics. PNAS, 117(38), 23408–23417. https://doi.org/10.1073/pnas.2007869117
  • Chutcharavan, P. M., Dutton, A. (2021). A global compilation of U-series-dated fossil coral sea-level indicators for the Last Interglacial period (Marine Isotope Stage 5e). Earth System Science Data, 13(7), 3155–3178. https://doi.org/10.5194/essd-13-3155-2021
  • Chutcharavan, P.M., Dutton, A., Ellwood, M.J. (2018). Seawater 234U/238U recorded by modern and fossil corals. Geochimica et Cosmochimica Acta, 224, 1–17. https://doi.org/10.1016/j.gca.2017.12.017
  • Cisneros, M., Cacho, I., Moreno, A., Stoll, H., Torner, J., Català, A., Edwards, R. L., Cheng, H., Fornós, J. J. (2021). Hydroclimate variability during the last 2700 years based on stalagmite multi-proxy records in the central-western Mediterranean. Quaternary Science Reviews, 269. https://doi.org/0.1016/j.quascirev.2021.107137
  • Clottes, J. (2012). Datations U-Th, évolution de l’art and Neandertal. International Newsletter on Rock Art, 64, 1–6.
  • Cobb, K. M., Charles, C. D., Cheng, H., Kastner, M., Edwards, R. L. (2003). U/Th-dating living and young fossil corals from the central tropical Pacific. Earth and Planetary Science Letters, 210(1–2), 91–103. https://doi.org/10.1016/S0012-821X(03)00138-9
  • Corbera, G., lo Iacono, C., Standish, C. D., Anagnostou, E., Titschack, J., Katsamenis, O., Cacho, I., van Rooij, D., Huvenne, V. A. I., Foster, G. L. (2021). Glacio-eustatic variations and sapropel events as main controls on the Middle Pleistocene-Holocene evolution of the Cabliers Coral Mound Province (W Mediterranean). Quaternary Science Reviews, 253. https://doi.org/10.1016/j.quascirev.2020.106783
  • Cruz, J., Turrero, M.J., Cáceres, J.O., Marín-Roldán, A., Ortega, A.I., Garralón, A., Sánchez, L., Gómez, P., Muñoz-García, M.B., Edwards, R.L., Martín-Chivelet, J. (2015). Long-term hydrological changes in northern Iberian (4.9-0.0 ky BP) from speleothem Mg/Ca ratios and cave monitoring (Ojo Guareña Karst Complex, Spain). Environmental Earth Science, 74(12), 7741-7753. https://doi.org/10.1007/s12665-015-4687-x
  • Cruz, J. A., McDermott, F., Turrero, M. J., Lawrence Edwards, R., Martín-Chivelet, J. (2021). Strong links between Saharan dust fluxes, monsoon strength, and North Atlantic climate during the last 5000 years. In Sci. Adv (Vol. 7). https://doi.org/10.1126/sciadv.abe6102
  • Delgado Castilla, L. (2009). Edades U/Th de los travertinos del cuaternario reciente de la Cuenca de Tabernas, Almería: implicaciones en su evolución geodinámica y paleoambiental. Cuaternario y Geomorfología, 23 (1-2), 33-42.
  • DePaolo, D.J., Maher, K., Christensen, J.N., McManus, J. (2006). Sediment transport time measured with U-series isotopes: results from ODP North Atlantic drift site 984. Earth and Planetary Science Letters, 248(1-2), 394-410. https://doi.org/10.1016/j.epsl.2006.06.004
  • Díaz-Hernández, J.L., Julià, R. (2006). Geochronological position of badlands and geomorphological patterns in the Guadix–Baza basin (SE Spain). Quaternary Research, 65, 467–477. https://doi.org/1016/j.yqres.2006.01.009
  • Díaz-Hernández, J.L., Julià, R. (2012). Comments on “Quaternary landscape evolution and erosion rates for an intramontane Neogene basin (Guadix–Baza basin, SE Spain)” by J.V. Pérez-Peña, J.M. Azañón, A. Azor, P. Tuccimei, M. Della Seta, M. Soligo, (2009) Geomorphology 106, 206–218. Geomorphology, 171-172, 201-203. https://doi.org/10.1016/j.geomorph.2012.05.018
  • Dominguez-Villar, D., Fairchild, I. J., Baker, A., Wang, X., Edwards, R. L., Cheng, H. (2009). Oxygen isotope precipitation anomaly in the North Atlantic region during the 8.2 ka event. Geology, 37(12), 1095–1098. https://doi.org/10.1130/G30393A.1
  • Domínguez-Villar, D., Vázquez-Navarro, J.A., Cheng, H., Edwards, R.L. (2011). Freshwater tufa record from Spain supports evidence for the past interglacial being wetter than the Holocene in the Mediterranean región. Global and Planetary Change, 77, 129-141. https://doi.org/10.1016/j.gloplacha.2011.04.006
  • Dorale, J. A., Onac, B. P., Fornós, J. J., Ginés, J., Ginés, A., Tucimei, P., Peate, D. W. (2010). Sea-Level Highstand 81,000 Years Ago in Mallorca. New Series, 12(5967), 860–863. https://doi.org/10.1126/science.1181725
  • Dosseto, A., Bourdon, B., Turner, S.P. (2008). Uranium-series isotopes in river materials: insights into the timescales of erosion and sediment transport. Earth and Planetary Science Letters, 265, 1-17. https://doi.org/10.1016/j.epsl.2007.10.023
  • Durán, J.J., Grün, R., Soria, J.M. (1988). Edad de las formaciones travertínicas del flanco meridional de la Sierra de Mijas (provincia de Málaga, Cordilleras Béticas). Geogaceta, 5, 61-63.
  • Dutton, A., Rubin, K., McLean, N., Bowring, J., Bard, E., Edwards, R.L., Henderson, G.M., Reid, M.R., Richards, D.A., Sims, K.W.W., Walker, J.D., Yokoyama, Y. (2017). Data reporting standards for publication of U-series data for geochronology and timescale assessment in the earth sciences. Quaternary Geochronology, 39, 142e149. https://doi.org/10.1016/j.quageo.2017.03.001
  • Edwards, R.L., Chen, J.H., Wasserburg, G.J. (1987). 238U, 234U, 230Th, 232Th systematics and the precise measurement of time over the past 500,000 years. Earth and Planetary Science Letters, 81, 175-192. https://doi.org/10.1016/0012-821X(87)90154-3
  • Edwards, R. L., Gallup, C.D., Cheng, H. (2003). Uranium-series Dating of Marine and Lacustrine Carbonates. Reviews in Mineralogy and Geochemistry, 52(1), 363–405. https://doi.org/10.2113/0520363
  • Eggins, S., Grün, R., Pike, A.W.G., Shelley, M., Taylor, L. (2003). 238U, 232Th profiling and U-series isotope analysis of fossil teeth by laser ablation-ICPMS. Quaternary Science Reviews, 22(10), 1373-1382. https://doi.org/10.1016/S0277-3791(03)00064-7
  • Eggins, S.M., Grün, R., McCulloch, M.T., Pike, A.-W.G., Chappell, J., Kinsley, L., Mortimer, G., Shelley, M., Murray-Wallace, C.V., Spötl, C., Taylor, L. (2005). In situ U-series dating by laser-ablation multi-collector ICPMS: new prospects for Quaternary geochronology. Quaternary Science Reviews, 24, 2523-2538. https://doi.org/10.1016/j.quascirev.2005.07.006
  • Fernández, F.J., Menéndez-Duarte, R., Pando, L., Rodríguez-Rodríguez, L., Iglesias, M. (2021). Gravitational slope processes triggered by past earthquakes on the Western Cantabrian Mountains (Sierra de la Sobia, Northern Spain). Geomorphology, 390, 107867. https://doi.org/10.1016/j.geomorph.2021.107867
  • Fornós, J. J., Gelabert, B., Ginés, A., Ginés, J., Tuccimei, P., Vesica, P. (2002). Phreatic overgrowths on speleothems: A useful tool in structural geology in littoral karstic landscapes. The example of eastern Mallorca (Balearic Islands). Geodinamica Acta, 15(2), 113–125. https://doi.org/10.1080/09853111.2002.10510745
  • Gascoyne, M. (1992). Geochemistry of the actinides and their daughters. En: Ivanovich, M. y Harmon, R.S. Uranium-series disequilibrium: Applications to Earth, marine, and environmental sciences. (2nd ed.). Clarendon Press, Oxford. 34-61.
  • Gascoyne, M., Schwarcz, H.P. (1986). Radionuclide migration over recent geologic time in a granitic pluton. Chemical Geology, 59, 75–85. https://doi.org/10.1016/0168-9622(86)90058-8
  • Gázquez, F., Calaforra, J.M., Forti, P., Stoll, H., Ghaleb, B., Delgado-Huertas, A. (2014). Paleoflood events recorded by speleothems in caves. Earth Surface Processes and Landforms, 39, 1345–1353. https://doi.org/10.1002/esp.3543
  • Gázquez, F., Bauska, T.K., Comas-Bru, L., Ghaleb, B., Calaforra, J.-M., Hodell, D.A. (2020). The potential of gypsum speleothems for paleoclimatology: application to the Iberian Roman Humid Period. Scientific Reports, 10, 14705. https://doi.org/10.1038/s41598-020-71679-3
  • Gázquez, F., Monteserín, A., Obert, C., Münker, C., Fernández-Cortés, Á., Calaforra, J.M. (2022). The Absolute Age and Origin of the Giant Gypsum Geode of Pulpí (Almería, SE Spain). Geosciences, 12, 144. https://doi.org/10.3390/geosciences12040144
  • Geyh, M.A. (2008). Selection of suitable data sets improves 230Th/U dates of dirty material. Geochronometria, 30, 69-77. https://doi.org/10.2478/v10003-008-0001-1
  • Gómez, P., Toscano, A., Rodríguez-Vidal, J., Cáceres, L.M., González-Regalado, M.L., Abad, M., Izquierdo, T., Ruiz, F., Monge, G., Campos, J.M., Bermejo, J. (2021). Comparativa de dataciones radiométricas en muestras de conchas marinas tardi-holocenas: El ejemplo de las tempestitas del estuario de Huelva. Cuaternario y Geomorfología, 35(1-2), 165-177. https://doi.org/10.17735/cyg.v35i1-2.89315
  • González-Lemos, S., Jiménez-Sánchez, M., Stoll, H.M. (2015). Sediment transport during recent cave flooding events and characterization of speleothem archives of past flooding. Geomorphology, 228, 87–100. https://doi.org/10.1016/j.geomorph.2014.08.029
  • Goy, J.L., Hillaire-Marcel, C.I., Zazo, C., Ghaleb, B., Dabrio, C.J., González-Delgado, J.A., Bardají, T., Civis, J., Preda, M., Yébenes, A., Forte, A.M. (2006). Further evidence for a relatively high sea level during the penultimate interglacial: open system U-series ages from La Marina (Alicante, East Spain). Geodinamica Acta, 19/6, 409-426. https://doi.org/10.3166/ga.19.409-426
  • Grün, R., Maroto, J., Eggins, S., Stringer, C., Robertson, S., Taylor, L., Mortimer, G., McCulloch, M. (2006). ESR and U-series analyses of enamel and dentine fragments of the Banyoles mandible. Journal of Human Evolution, 50, 347–358. https://doi.org/10.1016/j.jhevol.2005.10.001
  • Grün, R., Eggins, S., Kinsley, L., Moseley, H., Sambridge, M. (2014). Laser ablation U-series analysis of fossil bones and teeth. Palaeogeography, Palaeoclimatology, Palaeoecology, 416, 150-167. https://doi.org/10.1016/j.palaeo.2014.07.023
  • Hellstrom, J. (2006). U–Th dating of speleothems with high initial 230Th using stratigraphical constraint. Quaternary Geochronology, 1, 289–295. https://doi.org/10.1016/j.quageo.2007.01.004
  • Henderson. G., Slowey, N.C., Fleisher, M.Q. (2001). U-Th dating of carbonate platform and slope sediments. Geochimica et Cosmochimica Acta, 65(16), 2757–2770. https://doi.org/10.1016/S0016-7037(01)00621-4
  • Hibbert, F. D., Rohling, E. J., Dutton, A., Williams, F. H., Chutcharavan, P. M., Zhao, C., Tamisiea, M. E. (2016). Coral indicators of past sea-level change: A global repository of U-series dated benchmarks. Quaternary Science Reviews, 145, 1–56. https://doi.org/10.1016/j.quascirev.2016.04.019
  • Hillaire-Marcel, C., Carro, O., Causse, C., Goy, J.-L., Zazo, C. (1986). The/U dating of Strombus bubonius-bearing marine terraces in southeastern Spain. Geology, 14, 613-616. https://doi.org/10.1130/0091-7613(1986)14<613:TDOSBM>2.0.CO;2
  • Hillaire-Marcel, Cl., Gariépy, Cl., Ghaleb, B., Goy, J.L., Zazo, C., Cuerda, J. (1996). U-series measurements in Tyrrhenian deposits from Mallorca. Further evidente for two Last Interglacial high sea-levels in the Balearic Islands. Quaternary Science Reviews, 15, 53-62. https://doi.org/10.1016/0277-3791(95)00079-8
  • Hoffmann, D.L., Spötl, C., Mangini, A. (2009). Micromill and in situ laser ablation sampling techniques for high spatial resolution MC-ICPMS U-Th dating of carbonates. Chemical Geology, 259(3-4), 253-261. https://doi.org/0.1016/j.chemgeo.2008.11.015
  • Hoffmann, D. L., Standish, C. D., García-Diez, M., Pettitt, P. B., Milton, J. A., Zilhão, J., Alcolea-González, J. J., Cantalejo-Duarte, P., Collado, H., de Balbín, R., Lorblanchet, M., Ramos-Muñoz, J., Weniger, G. C., Pike, A. W. G. (2018). U-Th dating of carbonate crusts reveals Neandertal origin of Iberian cave art. Science, 359(6378), 912–915. https://doi.org/10.1126/science.aap7778
  • Isobar (2022). https://isobarscience.com/u-th/application/ [Consultado el 6 de abril de 2022]
  • Ivanovic, M., Harmon, R.S. (1992). Uranium-series disequilibrium: Applications to Earth, marine, and environmental sciences. (2nd ed.). Clarendon Press, Oxford. 910 pp.
  • Julià, R., Bischoff, J.L. (1991). Radiometric dating of Quaternary deposits and the Hominid mandible of Lake Banyolas, Spain. Journal of Archaeological Science, 18, 707-722. https://doi.org/10.1016/0305-4403(91)90031-J
  • Kaufman, A., Broecker, W.S. (1965). Comparison of Th230 and C14 ages for carbonate materials from lakes Lahontan and Bonneville. Journal of Geophysical Research, 70, 4039-4054. https://doi.org/10.1029/JZ070i016p04039
  • Kaufman, A., Broecker, W. S., Ku, T. L., Thurber, D. L. (1971). The status of U series methods of mollusk dating. Geochimica et Cosmochimica Acta, 35, 1155-1183. https://doi.org/10.1016/0016-7037(71)90031-7
  • Li, W.-X., Lundberg, J., Dickin, A.P., Ford, D.C., Schwarcz, H.P. (1989). High-precision mass-spectrometric uranium-series dating of cave deposits and implications for palaeoclimate studies. Nature, 339, 534-536. https://doi.org/10.1038/339534a0
  • Mallick, R., Frank, N. (2002). A new technique for precise uranium-serie dating of travertine micro-samples. Geochimica et Cosmochimica Acta, 66, 4261–4272. https://doi.org/10.1016/S0016-7037(02)00999-7
  • Martín-Banda, R., Insua-Arévalo, J.M., García-Mayordomo, J. (2021). Slip Rate Variation During the Last ∼210 ka on a Slow Fault in a Transpressive Regime: The Carrascoy Fault (Eastern Betic Shear Zone, SE Spain). Frontiers in Earth Science, 8, 599608. https://doi.org/10.3389/feart.2020.599608
  • Martín-Chivelet, J., Muñoz-García, M. B., Edwards, R. L., Turrero, M. J., & Ortega, A. I. (2011). Land surface temperature changes in Northern Iberia since 4000 yr BP, based on δ13C of speleothems. Global and Planetary Change, 77(1–2), 1–12. https://doi.org/10.1016/j.gloplacha.2011.02.002
  • Martín-Chivelet, J., Muñoz-García, M. B., Cruz, J. A., Ortega, A. I., Turrero, M. J. (2017). Speleothem Architectural Analysis: Integrated approach for stalagmite-based paleoclimate research. Sedimentary Geology, 353, 28–45. https://doi.org/10.1016/j.sedgeo.2017.03.003
  • Martín-García, R., Alonso-Zarza, A. M., Frisia, S., Rodríguez-Berriguete, Á., Drysdale, R., & Hellstrom, J. (2019). Effect of aragonite to calcite transformation on the geochemistry and dating accuracy of speleothems. An example from Castañar Cave, Spain. Sedimentary Geology, 383, 41–54. https://doi.org/10.1016/j.sedgeo.2019.01.014
  • Martinez‑Aguirre, A., Alcaraz‑Pelegrina, J.M., Rodriguez‑Vidal, J. (2019). U/Th dating of impure carbonates: 230Th/232Th activity ratios in detrital material. Journal of Radioanalytical and Nuclear Chemistry, 321, 71–81. https://doi.org/10.1007/s10967-019-06560-3
  • Martínez-Diaz, J.J., Hernández Enrile, J.L. (2001). Using travertine deformations to characterize paleoseismic activity along an active oblique-slip fault: the Alhama de Murcia fault (Betic Cordillera, Spain). Acta Geologica Hispanica, 36(3-4), 297-313.
  • Moreno, A., Stoll, H., Jiménez-Sánchez, M., Cacho, I., Valero-Garcés, B., Ito, E., Edwards, R. L. (2010). A speleothem record of glacial (25-11.6 kyr BP) rapid climatic changes from northern Iberian Peninsula. Global and Planetary Change, 71(3–4), 218–231. https://doi.org/10.1016/j.gloplacha.2009.10.002
  • Moreno, X., Masana, E., Pallàs, R., Gràcia, E., Rodés, A., Bordonau, J. (2015). Quaternary tectonic activity of the Carboneras Fault in the La Serrata range (SE Iberia): Geomorphological and chronological constraints. Tectonophysics, 663, 78-94. https://doi.org/10.1016/j.tecto.2015.08.016
  • Moreno, A., Pérez-Mejías, C., Bartolomé, M., Sancho, C., Cacho, I., Stoll, H., Delgado-Huertas, A., Hellstrom, J., Edwards, R. L., Cheng, H. (2017). New speleothem data from Molinos and Ejulve caves reveal holocene hydrological variability in northeast Iberia. Quaternary Research (United States), 88(2), 223–233. https://doi.org/10.1017/qua.2017.39
  • Moreno, D., Gutiérrez, F., Val, M. del, Carbonel, D., Jiménez, F., Jesús Alonso, M., Martínez-Pillado, V., Guzmán, O., López, G.I., Martínez, D. (2021). A multi-method dating approach to reassess the geochronology of faulted Quaternary deposits in the central sector of the Iberian Chain (NE Spain). Quaternary Geochronology, 65, 101185. https://doi.org/10.1016/j.quageo.2021.101185
  • Muhs, D. R., Meco, J., Simmons, K. R. (2014). Uranium-series ages of corals, sea level history, and palaeozoogeography, Canary Islands, Spain: An exploratory study for two Quaternary interglacial periods. Palaeogeography, Palaeoclimatology, Palaeoecology, 394, 99–118. https://doi.org/10.1016/j.palaeo.2013.11.015
  • Muhs, D. R., Simmons, K. R., Meco, J., Porat, N. (2015). Uranium-series ages of fossil corals from Mallorca, Spain: The “Neotyrrhenian” high stand of the Mediterranean Sea revisited. Palaeogeography, Palaeoclimatology, Palaeoecology, 438, 408–424. https://doi.org/10.1016/j.palaeo.2015.06.043
  • Muñoz-García, M. B., Rossi, C., Ford, D. C., Schwarcz, H. P., Martín-Chivelet, J. (2007). Chronology of Termination II and the Last Interglacial Period in North Spain based on stable isotope records of stalagmites from Cueva del Cobre (Palencia). Journal of Iberian Geology, 33(1), 17–30.
  • Muñoz-García, M. B., Cruz, J., Martín-Chivelet, J., Ortega, A. I., Turrero, M. J., López-Elorza, M. (2016). Comparison of speleothem fabrics and microstratigraphic stacking patterns in calcite stalagmites as indicators of paleoenvironmental change. Quaternary International, 407, 74–85. https://doi.org/10.1016/j.quaint.2016.02.036
  • Obert, J. C., Scholz, D., Felis, T., Brocas, W. M., Jochum, K. P., Andreae, M. O. (2016). 230Th/U dating of Last Interglacial brain corals from Bonaire (southern Caribbean) using bulk and theca wall material. Geochimica et Cosmochimica Acta, 178, 20–40. https://doi.org/10.1016/j.gca.2016.01.011
  • Osete, M. L., Martín-Chivelet, J., Rossi, C., Edwards, R. L., Egli, R., Muñoz-García, M. B., Wang, X., Pavón-Carrasco, F. J., Heller, F. (2012). The Blake geomagnetic excursion recorded in a radiometrically dated speleothem. Earth and Planetary Science Letters, 353–354, 173–181. https://doi.org/10.1016/j.epsl.2012.07.041
  • Ordóñez, S., González Martín, J.A., García del Cura, M.A. (1990). Datación radiogénica (U-234/U-238 y Th-230/U-234) de sistemas travertínicos del Alto Tajo (Guadalajara). Geogaceta, 8, 53-56.
  • Ordóñez, S., González-Martín, J.A., García del Cura, M.A., Pedley, H.M. (2005). Temperate and semi-arid tufas in the Pleistocene to Recent fluvial barrage system in the Mediterranean area: The Ruidera Lakes Natural Park (Central Spain). Geomorphology, 69, 332-350. https://doi.org/10.1016/j.geomorph.2005.02.002
  • Papadopoulos, A. Christofides, G. Koroneos, A., Stoulos, S., Papastefanou, C. (2013). Radioactive secular equilibrium in 238U and 232Th series in granitoids from Greece. Applied Radiation and Isotopes, 75, 95-104. https://doi.org/10.1016/j.jenvrad.2013.06.002
  • Pasquetti, F. Bini, M., Giaccio, B., Ratti, A., Vacchi, M., Zanchetta, G. (2021). Chronology of the Mediterranean sea‐level highstand during the Last Interglacial: a critical review of the U/Th‐dated deposits. Journal of Quaternary Science, 36(7), 1174–1189. https://doi.org/10.1002/jqs.3359
  • Peña-Monné, J.L., Ramírez, L.M., Sampietro-Vattuone, M.M., Martínez, R.D., Medialdea, A., Bartolomé, M., Fernández, V.R., Giménez, R.G., Turú, V., Ros, X., Baró, P., Bernal-Wormull, J.L., Edwards, R.L. (2022). Geomorphological, chronological, and paleoenvironmental context of the Mousterian site at Roca San Miguel (Arén, Huesca, Spain) from the penultimate to the last glacial cycle. Quaternary Research, 106, 162–181. https://doi.org/10.1017/qua.2021.61
  • Pérez-Mejías, C., Moreno, A., Sancho, C., Bartolomé, M., Stoll, H., Cacho, I., Cheng, H., Edwards, R.L. (2017). Abrupt climate changes during Termination III in Southern Europe. PNAS, 114(38), 10047-10052. https://doi.org/10.1073/pnas.1619615114
  • Pérez-Mejías, C., Sancho, C., Gázquez, F., Moreno, A., Bartolomé, M., Osácar, M. C., Cheng, H. (2019). Insights into the speleogenesis of Ejulve cave (Iberian Range, NE Spain): quaternary hydrothermal karstification? Journal of Iberian Geology, 45(3), 511–527. https://doi.org/10.1007/s41513-019-00107-x
  • Pérez-Peña, J.V., Azañón, J.M., Azor, Z., Tuccimei, P., Della Seta, M., Soligo, M. (2009). Quaternary landscape evolution and erosion rates for an intramontane Neogene basin (Guadix–Baza basin, SE Spain). Geomorphology, 106, 206–2188. https://doi.org/10.1016/j.geomorph.2008.10.018
  • Pike, A.W.G., Hedges, R.E.M., van Calsteren, P. (2002). U-series dating of bone using the diffusion-adsorption model. Geochimica et Cosmochimica Acta, 66(24), 4273–4286. https://doi.org/10.1016/S0016-7037(02)00997-3
  • Pike, A. W. G., Hoffmann, D. L., García-Diez, M., Pettitt, P. B., Alcolea, J., de Balbín, R., González-Sainz, C., de las Heras, C., Lasheras, J. A., Montes, R., Zilhão, J. (2012). U-Series Dating of Paleolithic Art in 11 Caves in Spain. Science, 336(6087), 1409–1413. https://doi.org/10.1126/science.1219957
  • Potter, E.K., Stirlinga, C.H., Wiecherta, U.H., Hallidaya, A.N., Spötl, C. (2005). Uranium-series dating of corals in situ using laser-ablation MC-ICPMS. International Journal of Mass Spectrometry, 240, 27–35. https://doi.org/10.1016/j.ijms.2004.10.007
  • Przybylowicz, W., Schwarcz, H.P., Latham, A.G. (1991). Dirty calcite 2: U-series dating of artifical calcite-detritus mixtures. Chemical Geology, 86, 161-178. https://doi.org/10.1016/0168-9622(91)90060-A
  • Quinif, Y., Maire, R. (1998). Pleistocene Deposits in Pierre Saint-Martin Cave, French Pyrenees. Quaternary Research, 49, 37–50. https://doi.org/10.1006/qres.1997.1939
  • Radtke, U., Briickner, H., Mangini, A., Hausmann, R. (1988). Problems encountered with absolute dating (U-series, ESR) of Spanish calcretes. Quaternary Science Reviews, 7, 439-445. https://doi.org/10.1016/0277-3791(88)90043-1
  • Richards, D. A., Dorale, J. (2003). Uranium-series Chronology and Environmental Applications of Speleothems. Reviews in Mineralogy and Geochemistry, 52(1), 407–460. https://doi.org/10.2113/0520407
  • Robinson, L.F., Henderson, G.M., Slowey, N.C. (2002). U/Th dating of marine isotope stage 7 in Bahamas slope sediments. Earth and Planetary Science Letters, 196, 175-187. https://doi.org/10.1016/S0012-821X(01)00610-0
  • Rodríguez, J.C., Ardila, P.A.R., Valsero, J.J.D., Igúzquiza, E.P., Cheng, H., Rosillo, S.M., Espinar, J.A.L., Moreno, L. (2018). Deducciones paleoclimáticas a partir del estudio de una secuencia sedimentaria alternante de espeleotemas y sedimentos detríticos en Sima Engañá, Sierra de las Nieves (Málaga). Cuaternario y Geomorfología. 32, 75–89. https://doi.org/10.17735/cyg.v32i1-2.56659
  • Rodríguez Vidal, J., Cáceres, L.M., Martínez Aguirre, A., Alcaraz, J.M., Belluomini, G., Alonso Chaves, F.M., Rodríguez Ramírez, A., Cantano, M. (2000). Dataciones isotópicas de carbonatos continentales en el Pleistoceno Superior de las Islas Chafarinas (N África, España). Cuaternario y Geomorfología, 14(3-4), 101-107.
  • Rodríguez-Pascua, M.A., Bischoff, J., Garduño-Monroy, V.H., Pérez-López, R., Giner-Robles, J.L., Israde-Alcántara, I., Calvo, J.P., Williams, R.W. (2009). Estimation of the tectonic slip-rate from Quaternary lacustrine facies within the intraplate Albacete province (SE of Spain). Sedimentary Geology, 222, 89–97. https://doi.org/10.1016/j.sedgeo.2009.06.007
  • Roquero, E., Silva, P.G., Rodríguez-Pascua, M.A., Bardají, T., Elez, J., Carrasco-García, P., Giner-Robles, J.L. (2019). Analysis of faulted fan surfaces and paleosols in the Palomares Fault Zone (Betic Cordillera, SE Spain): Paleoclimatic and paleoseismic implications. Geomorphology, 342, 88-102. https://doi.org/10.1016/j.geomorph.2019.06.003
  • Rossi, C., Bajo, P., Lozano, R. P., & Hellstrom, J. (2018). Younger Dryas to Early Holocene paleoclimate in Cantabria (N Spain): Constraints from speleothem Mg, annual fluorescence banding and stable isotope records. Quaternary Science Reviews, 192, 71–85. https://doi.org/10.1016/j.quascirev.2018.05.025
  • Sancho, C., Peña, J.L., Mikkan, R., Osácar, C., Quinif, Y. (2004). Morphological and speleothemic development in Brujas Cave (Southern Andean Range, Argentine): palaeoenvironmental significance. Geomorphology, 57, 367–384. https://doi.org/10.1016/S0169-555X(03)00166-1
  • Sancho, C., Arenas, C., Pardo, G., Vázquez, M., Hellstrom, J., Ortiz, J.E., Torres, T., Rhodes, E. Osácar, M.C., Auqué, L. (2010). Ensayo cronológico de las tobas cuaternarias del río Piedra (Cordillera Ibérica). Geogaceta, 48, 31-34.
  • Sancho, C., Arenas, C., Vázquez-Urbez, M., Pardo, G., Lozano, M.V., Peña-Monné, J.L., Hellstrom, J., Ortiz, J.E., Osácar, M.C., Auqué, L., Torres, T. (2015). Climatic implications of the Quaternary fluvial tufa record in the NE Iberian Peninsula over the last 500 ka. Quaternary Research, 84, 398–414. https://doi.org/10.1016/j.yqres.2015.08.003
  • Sauvet, G., Bourrillon, R., Conkey, M., Fritz, C., Gárate-Maidagan, D., Rivero Vilá, O., Tosello, G., & White, R. (2017). Uranium–thorium dating method and Palaeolithic rock art. Quaternary International, 432, 86–92. https://doi.org/10.1016/j.quaint.2015.03.053
  • Scholz, D., Hoffmann, D. (2008). 230Th/U-dating of fossil corals and speleothems. E&G Quaternary Science Journal, 57, 52–76. https://doi.org/10.3285/eg.57.1-2.3
  • Schulte, L., Julià, R., Burjachs, F., Hilgers, A. (2008). Middle Pleistocene to Holocene geochronology of the River Aguas terrace sequence (Iberian Peninsula): Fluvial response to Mediterranean environmental change. Geomorphology, 98, 13–33. https://doi.org/10.1016/j.geomorph.2007.03.018
  • Schwarcz, H.P., Gascoyne, M., Ford, D.C. (1982). Uranium series disequilibrium studies of granitic rocks. Chemical Geology, 36, 87–102. https://doi.org/10.1016/0009-2541(82)90040-7
  • Shen, C.C., Edwards, R.L., Cheng, H., Dorale, J.A., Thomas, R.B., Moran, S.B., Weinstein, S.E., Edmonds, H.N. (2002). Uranium and thorium isotopic and concentration measurements by magnetic sector inductively coupled plasma mass spectrometry. Chemical Geology, 185, 165-178. https://doi.org/10.1016/S0009-2541(01)00404-1
  • Shen, C. C., Li, K. S., Sieh, K., Natawidjaja, D., Cheng, H., Wang, X., Edwards, R. L., Lam, D. D., Hsieh, Y. te, Fan, T. Y., Meltzner, A. J., Taylor, F. W., Quinn, T. M., Chiang, H. W., Kilbourne, K. H. (2008). Variation of initial 230Th/232Th and limits of high precision U-Th dating of shallow-water corals. Geochimica et Cosmochimica Acta, 72(17), 4201–4223. https://doi.org/10.1016/j.gca.2008.06.011
  • Slimak, L., Fietzke, J., Geneste, J. M., Ontañón, R. (2018). Comment on “U-Th dating of carbonate crusts reveals Neandertal origin of Iberian cave art.” Science, 361(6408). https://doi.org/10.1126/science.aau1371
  • Soligo, M., Tuccimei, P., Barberi, R., Delitala, M.C., Miccadei, E., Taddeucci, A. (2002). U/Th dating of freshwater travertine from Middle Velino Valley (Central Italy): paleoclimatic and geological implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 184, 147-161. https://doi.org/10.1016/S0031-0182(02)00253-5
  • Stoll, H. M., Moreno, A., Mendez-Vicente, A., Gonzalez-Lemos, S., Jimenez-Sanchez, M., Dominguez-Cuesta, M. J., Edwards, R. L., Cheng, H., Wang, X. (2013). Paleoclimate and growth rates of speleothems in the northwestern Iberian Peninsula over the last two glacial cycles. Quaternary Research (United States), 80(2), 284–290. https://doi.org/10.1016/j.yqres.2013.05.002
  • Thompson, D. M. (2022). Environmental records from coral skeletons: A decade of novel insights and innovation. In Wiley Interdisciplinary Reviews: Climate Change (Vol. 13, Issue 1). John Wiley and Sons Inc. https://doi.org/10.1002/wcc.745
  • Tuccimei, P., Gines, J., Delitala, M. C., Ginés, A., Gràcia, F., Fornós, J. J., Taddeucci, A. (2006). Last interglacial sea level changes in Mallorca island (Western Mediterranean). High precision U-series data from phreatic overgrowths on speleothems. Zeitschrift Fur Geomorphologie, 50(1), 1–21. https://doi.org/10.1127/zfg/50/2006/1
  • Tuccimei, P., Soligo, M., Ginés, J., Ginés, A., Fornós, J., Kramers, J., Villa, I. M. (2010). Constraining Holocene sea levels using U-Th ages of phreatic overgrowths on speleothems from coastal caves in Mallorca (Western Mediterranean). Earth Surface Processes and Landforms, 35(7), 782–790. https://doi.org/10.1002/esp.1955
  • van Calsteren, P., Thomas, L. (2006). Uranium-series dating applications in natural environmental science. Earth Science Reviews, 75(1-4) pp. 155–175. https://doi.org/10.1016/j.earscirev.2005.09.001
  • Vesica, P. L., Tuccimei, P., Turi, B., Fornoh, J. J., Ginés, A., Ginés, J. (2000). Late Pleistocene Paleoclimates and sea-level change in the Mediterranean as inferred from stable isotope and U-series studies of overgrowths on speleothems, Mallorca, Spain. Quaternary Science Reviews, 19, 865–879. https://doi.org/10.1016/S0277-3791(99)00026-8
  • Villa, E., Stoll, H., Farias, P., Adrados, L., Edwards, R.L., Cheng, H. (2013). Age and significance of the Quaternary cemented deposits of the Duje Valley (Picos de Europa, Northern Spain). Quaternary Research, 79, 1-5. https://doi.org/10.1016/j.yqres.2012.10.005
  • Wendt, K. A., Li, X., Edwards, R. L. (2021). Uranium-thorium dating of speleothems. Elements, 17(2), 87–92. https://doi.org/10.2138/GSELEMENTS.17.2.87
  • Worthan, B.E., Banner, J.L., James, E.W., Edwards, R.L., Loewy, S. (2022). Application of cave monitoring to constrain the value and source of detrital 230Th/232Th in speleothem calcite: Implications for U-series geochronology of speleothems. Palaeogeography, Palaeoclimatology, Palaeoecology, 596, 110978. https://doi.org/10.1016/j.palaeo.2022.110978
  • Zazo, C., Silva, P.G., Goy, J.L., Hillaire-Marcel, C., Ghaleb, B., Lario, J., Bardají, T., González, J.A. (1999). Coastal uplift in continental collision plate boundaries: data from the Last Interglacial marine terraces of the Gibraltar Strait area (south Spain). Tectonophysics, 301, 95-109. https://doi.org/10.1016/S0040-1951(98)00217-0
  • Zazo, C., Goy, J.L., Hillaire-Marcel, C., Gillot, P.Y., Soler, V., González-Delgado, J.A., Dabrio, C.J., Ghaleb, B. (2002). Raised marine sequences of Lanzarote and Fuerteventura revisited - a reappraisal of relative sea-level changes and vertical movements in the eastern Canary Islands during the Quaternary. Quaternary Science Reviews, 21, 2019-2046. https://doi.org/10.1016/S0277-3791(02)00009-4
  • Zazo, C., Goy, J.L., Dabrio, C.J., Bardají, T., Hillaire-Marcel, C., Ghaleb, B., González-Delgado, J.A., Soler, V. (2003). Pleistocene raised marine terraces of the Spanish Mediterranean and Atlantic coasts: records of coastal uplift, sea-level high-stands and climate changes. Marine Geology, 194, 103-133. https://doi.org/10.1016/S0025-3227(02)00701-6
  • Zellmer, G.F., Rubin, K.H., Grönvold, K., Jurado-Chichay, Z. (2008). On the recent bimodal magmatic processes and their rates in the Torfajökull–Veidivötn area, Iceland. Earth and Planetary Science Letters, 269, 388–398. https://doi.org/10.1016/j.epsl.2008.02.026