Strong subbandgap photoconductivity in GaP implanted with Ti

  1. Olea Ariza, Javier 1
  2. Prado Millán, Álvaro del 1
  3. García-Hemme, Eric 1
  4. García-Hernansanz, Rodrigo 1
  5. Montero Álvarez, Daniel 1
  6. González-Díaz, German 1
  7. Gonzalo, Jose 3
  8. Siegel, Jan 3
  9. López, Esther 2
  1. 1 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

  2. 2 Instituto de Energía Solar, ETSI de Telecomunicación; Universidad Politécnica de Madrid; Ciudad Universitaria s/n 28040 Madrid Spain
  3. 3 Laser Processing Group; Instituto de Optica; IO-CSIC, Serrano 121 28006 Madrid Spain
Revista:
Progress in Photovoltaics: Research and Applications

ISSN: 1062-7995

Año de publicación: 2018

Volumen: 26

Número: 3

Páginas: 214-222

Tipo: Artículo

DOI: 10.1002/PIP.2974 SCOPUS: 2-s2.0-85037643534 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Progress in Photovoltaics: Research and Applications

Resumen

Photovoltaic solar cells based on the intermediate band (IB) concept could greatly enhance the efficiency of future devices. We have analyzed the electrical and photoconductivity properties of GaP supersaturated with Ti to assess its suitability for IB solar cells. GaP:Ti was obtained by ion implantation followed by pulsed-laser melting (PLM) using an ArF excimer laser. It was found that PLM energy densities between 0.35 and 0.55 J/cm2 produced a good recovery of the crystalline structure of GaP (both unimplanted and implanted with Ti), as evidenced by high mobility measured values (close to the reference GaP). Outside this energy density window, the PLM failed to recover the crystalline structure producing a low mobility layer that is electrically isolated from the substrate. Spectral photoconductivity measurements were performed by using the van der Pauw set up. For GaP:Ti a significant enhancement of the conductivity was observed when illuminating the sample with photon energies below 2.26 eV, suggesting that this photoconductivity is related to the presence of Ti in a concentration high enough to form an IB within the GaP bandgap. The position of the IB was estimated to be around 1.1 eV from the conduction band or the valence band of GaP, which would lead to maximum theoretical efficiencies of 25% to 35% for a selective absorption coefficients scenario and higher for an overlapping scenario.

Información de financiación

Financiadores

Referencias bibliográficas

  • Luque, (1997), Phys Rev Lett, 78, pp. 5014, 10.1103/PhysRevLett.78.5014
  • Luque, (2012), Nature Photonics, 6, pp. 146, 10.1038/nphoton.2012.1
  • Ruhle, (2016), Solar Energy, 130, pp. 139, 10.1016/j.solener.2016.02.015
  • Lu, (2013), Ieee Journal of the Electron Devices Society, 1, pp. 111, 10.1109/JEDS.2013.2266410
  • Allen, (2011), Sol Energy Mater Sol Cells, 95, pp. 2655, 10.1016/j.solmat.2011.05.034
  • Wahnon, (2002), Physical Review B, 65, 10.1103/PhysRevB.65.165115
  • Tablero, (2005), Solid State Commun, 133, pp. 97, 10.1016/j.ssc.2004.10.009
  • Palacios, (2006), Physical Review B, 73, 10.1103/PhysRevB.73.085206
  • Tablero, (2003), Appl Phys Lett, 82, pp. 151, 10.1063/1.1535744
  • Lauer, (1997), Crystal Research and Technology, 32, pp. 1095, 10.1002/crat.2170320812
  • Clerjaud, (1985), Journal of Physics C-Solid State Physics, 18, pp. 3615, 10.1088/0022-3719/18/19/005
  • Fernandez, (2004), J Chem Phys, 120, pp. 10780, 10.1063/1.1737367
  • Palacios, (2006), J Chem Phys, 124, pp. 014711, 10.1063/1.2140695
  • Tablero, (2006), Comput Mater Sci, 36, pp. 263, 10.1016/j.commatsci.2005.04.005
  • Tablero, (2005), J Chem Phys, 123, pp. 184703, 10.1063/1.2107367
  • Luque, (2006), Physica B-Condensed Matter, 382, pp. 320, 10.1016/j.physb.2006.03.006
  • Yu, (2003), J Appl Phys, 94, pp. 1043, 10.1063/1.1582393
  • Yu, (2006), Appl Phys Lett, 88, pp. 092110, 10.1063/1.2181627
  • Yu, (2002), Appl Phys Lett, 80, pp. 3958, 10.1063/1.1481196
  • White, (1980), Laser and electron beam processing of materials
  • Pastor, (2009), J Appl Phys, 106, pp. 053510, 10.1063/1.3187902
  • Pastor D Olea J Toledano-Luque M Mártil I González-Díaz G. Pulsed laser melting effects on single crystal gallium phosphide Proceedings of the 2009 Spanish Conference on Electron Devices 2009
  • Yuan, (2016), ACS Appl Mater Interfaces, 8, pp. 3912, 10.1021/acsami.5b10949
  • Williams, (1983), Mat Res Soc Symp Proc, 13
  • Anderson, (1980), Laser and Electron Beam Processing of Materials, 10.1016/B978-0-12-746850-1.50051-7
  • Young, (1982), Electron Device Letters, 3, pp. 280, 10.1109/EDL.1982.25569
  • Werner, (2016), J Appl Phys, 120, pp. 085103, 10.1063/1.4961518
  • Solis, (1992), J Appl Phys, 71, pp. 1032, 10.1063/1.350391
  • Mailoa, (2014), Nat Commun, 5, pp. 3011, 10.1038/ncomms4011
  • Shan, (1999), Phys Rev Lett, 82, pp. 1221, 10.1103/PhysRevLett.82.1221
  • Casey, (1969), J Appl Phys, 40, pp. 2945, 10.1063/1.1658106
  • Panish, (1969), J Appl Phys, 40, pp. 163, 10.1063/1.1657024
  • Takizawa, (1983), J Physical Soc Japan, 52, pp. 1057, 10.1143/JPSJ.52.1057
  • Garcia-Hemme, (2015), Journal of Physics D-Applied Physics, 48, pp. 7, 10.1088/0022-3727/48/7/075102
  • Miyao, (1980), J Appl Phys, 51, pp. 4139, 10.1063/1.328233
  • Lu, (2012), Ieee Journal of Photovoltaics, 2, pp. 214, 10.1109/JPHOTOV.2011.2182180
  • Wood, (1981), Physical Review B, 23, pp. 2923, 10.1103/PhysRevB.23.2923
  • Railkar, (2001), J Appl Phys, 89, pp. 4766, 10.1063/1.1359752
  • Yoshida, (1993), Appl Phys Lett, 63, pp. 3035, 10.1063/1.110250
  • Ding, (2007), Proceedings of the Society of Photo-Optical Instrumentation Engineers (Spie), pp. C4581
  • Lopez, (2011), Phys Rev Lett, 106, 10.1103/PhysRevLett.106.028701
  • Marsen, (2012), Progress in Photovoltaics, 20, pp. 625, 10.1002/pip.1197
  • Berencen, (2017), Sci Rep, 7, pp. 9, 10.1038/srep43688
  • Garcia-Hemme, (2012), Appl Phys Lett, 101, pp. 192101, 10.1063/1.4766171
  • Navruz, (2008), Solar Energy Materials and Solar Cells, 92, pp. 273, 10.1016/j.solmat.2007.08.012