Zeolite Adsorbents for Selective Removal of Co(II) and Li(I) from Aqueous Solutions

  1. Díez, Eduardo
  2. Redondo, Cinthya
  3. Gómez, José María
  4. Miranda, Ruben
  5. Rodríguez, Araceli
Revista:
Water

ISSN: 2073-4441

Año de publicación: 2023

Volumen: 15

Número: 2

Páginas: 270

Tipo: Artículo

DOI: 10.3390/W15020270 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Water

Resumen

Cobalt and lithium are critical metals because of its shortage, difficulty of extractionand huge economic impact due to their market value. The purpose of this work is to study theirselective removal from aqueous solutions in different conditions using two commercial FAU zeolitesas adsorbent materials. These solids were characterized by XRD, XRF and BET analysis, to follow upof their FAU structure integrity, their Si/Al ratio, and their specific surface area evolutions throughtheir preparation process. The kinetic study indicates that using both zeolites with a dosage of 5 g/L a100% cobalt removal from aqueous solutions is achievable, while lithium removal is kept around 30%(separation factor of 3.33). This selectivity is important as these two metals frequently appear togetherin leaching solutions form, for example, ion-Li batteries. In relation to the adsorption equilibrium,cobalt adsorption presents a finite adsorption capacity while this behavior is not observed in lithiumadsorption. For this reason, Langmuir model is the most adequate to represent cobalt adsorption,while lithium adsorption is better represented by Freundlich model.

Información de financiación

Financiadores

  • Santander-UCM 2020 project
    • PR108/20-07
  • Community of Madrid to C.R. through the program “Garantía Juvenil”
    • CT103/19/PEJ-2019-AI/IND-13004

Referencias bibliográficas

  • Burakov, (2018), Ecotoxicol. Environ. Saf., 148, pp. 702, 10.1016/j.ecoenv.2017.11.034
  • Hu, (2018), Appl. Clay Sci., 157, pp. 121, 10.1016/j.clay.2018.02.030
  • Islam, (2018), Environ. Nanotechnol. Monit. Manag., 10, pp. 435
  • Lemaire, (2014), Hydrometallurgy, 143, pp. 1, 10.1016/j.hydromet.2013.11.006
  • Coman, (2013), Resour. Conserv. Recycl., 73, pp. 229, 10.1016/j.resconrec.2013.01.019
  • Chivot, (2008), Corros. Sci., 50, pp. 62, 10.1016/j.corsci.2007.07.002
  • Kyzas, (2016), Colloids Surf. A Physicochem. Eng. Asp., 490, pp. 74, 10.1016/j.colsurfa.2015.11.038
  • Jiang, (2020), Can. J. Chem. Eng., 98, pp. 544, 10.1002/cjce.23640
  • Purnomo, (2018), Waste Manag., 79, pp. 454, 10.1016/j.wasman.2018.08.017
  • Pahlavanzadeh, (2020), J. Chem. Eng. Data, 65, pp. 185, 10.1021/acs.jced.9b00868
  • Blengini, G.A., Latunussa, C.E.L., and Eynard, U. (2020). European Commission. Available online: https://op.europa.eu/en/publication-detail/-/publication/c0d5292a-ee54-11ea-991b-01aa75ed71a1/language-en.
  • Xu, (2008), J. Power Sources, 177, pp. 512, 10.1016/j.jpowsour.2007.11.074
  • Karate, (2008), J. Hazard. Mater., 157, pp. 464, 10.1016/j.jhazmat.2008.01.013
  • Barakat, (2011), Arab. J. Chem., 4, pp. 361, 10.1016/j.arabjc.2010.07.019
  • Assaad, (2007), Appl. Clay Sci., 37, pp. 258, 10.1016/j.clay.2007.02.007
  • (2003), Adsorpt. Sci. Technol., 21, pp. 951, 10.1260/02636170360744380
  • Sari, (2013), Microporous Mesoporous Mater., 170, pp. 155, 10.1016/j.micromeso.2012.12.004
  • Sari, (2014), Appl. Clay Sci., 88–89, pp. 63, 10.1016/j.clay.2013.12.021
  • Saleh, (2016), J. Mol. Liq., 219, pp. 937, 10.1016/j.molliq.2016.03.060
  • Saleh, (2017), Chem. Eng. J., 307, pp. 230, 10.1016/j.cej.2016.08.070
  • Tuzen, (2020), Chem. Eng. Res. Des., 159, pp. 353, 10.1016/j.cherd.2020.04.034
  • Prabakaran, (2013), Int. J. Sci. Eng. Technol. Res., 2, pp. 271
  • Kobya, (2005), Bioresour. Technol., 96, pp. 1518, 10.1016/j.biortech.2004.12.005
  • Deravanesiyan, (2015), J. Ind. Eng. Chem., 21, pp. 580, 10.1016/j.jiec.2014.03.023
  • Wang, (2017), ACS Sustain. Chem. Eng., 5, pp. 11489, 10.1021/acssuschemeng.7b02700
  • (2020), Microporous Mesoporous Mater., 295, pp. 109984, 10.1016/j.micromeso.2019.109984
  • Li, (2020), Chem. Eng. J., 390, pp. 124513, 10.1016/j.cej.2020.124513
  • Iftekhar, (2022), Environ. Chem. Lett., 20, pp. 3697, 10.1007/s10311-022-01486-x
  • Araissi, (2020), Iran. J. Chem. Chem. Eng., 39, pp. 169
  • (2019), Environ. Prog. Sustain. Energy, 38, pp. S352, 10.1002/ep.13057
  • Conte, (2022), Sep. Purif. Technol., 303, pp. 122199, 10.1016/j.seppur.2022.122199
  • Treacy, M.M.J., and Higgins, J.B. (2007). Elsevier Science. [5th ed.].
  • Kennedy, (2018), Microporous Mesoporous Mater., 262, pp. 235, 10.1016/j.micromeso.2017.11.054
  • Thommes, (2015), Pure Appl. Chem., 87, pp. 1051, 10.1515/pac-2014-1117
  • Lanzafame, (2019), Appl. Catal. A Gen., 580, pp. 186, 10.1016/j.apcata.2019.05.015
  • Llewellyn, (2010), Microporous Mesoporous Mater., 135, pp. 187, 10.1016/j.micromeso.2010.07.008
  • Arshadi, (2014), Water Resour. Ind., 6, pp. 1, 10.1016/j.wri.2014.06.001
  • Konrad, (2019), Geochim. Cosmochim. Acta, 248, pp. 14, 10.1016/j.gca.2018.12.040
  • Nightingale, (1959), J. Phys. Chem., 63, pp. 1381, 10.1021/j150579a011
  • Allred, (1961), J. Inorg. Nucl. Chem., 17, pp. 215, 10.1016/0022-1902(61)80142-5
  • Kreysa, G., Savinell, R.F., and Ota, K. (2014). Encyclopedia of Applied Electrochemistry, Springer.
  • Simonin, (2016), Chem. Eng. J., 300, pp. 254, 10.1016/j.cej.2016.04.079
  • Lagergren, (1898), K. Sven. Vetensk. Handl., 24, pp. 1
  • Ho, (1999), Process Biochem., 34, pp. 451, 10.1016/S0032-9592(98)00112-5
  • Vuono, (2017), Chin. J. Chem. Eng., 25, pp. 523, 10.1016/j.cjche.2016.10.021
  • Webber, (1963), J. Sanit. Eng. Div., 89, pp. 31, 10.1061/JSEDAI.0000430
  • Hinz, (2001), Geoderma, 99, pp. 225, 10.1016/S0016-7061(00)00071-9
  • (2004), Adsorption, 10, pp. 87, 10.1023/B:ADSO.0000024038.32712.18
  • Joseph, (2020), J. Environ. Chem. Eng., 8, pp. 103895, 10.1016/j.jece.2020.103895
  • Kuwer, (2021), Water Sci. Technol., 84, pp. 2288, 10.2166/wst.2021.452
  • Xu, C., Yu, T., Peng, J., Zhao, L., Li, J., and Zhai, M. (2020). Efficient adsorption performance of lithium ion onto cellulose microspheres with sulfonic acid groups. Quantum Beam Sci., 4.
  • Wajima, (2012), Plasma Fusion Res., 7, pp. 5, 10.1585/pfr.7.2405021