Sustainable Recovery of Cobalt from Aqueous Solutions Using an Optimized Mesoporous Carbon

  1. Conte, Naby
  2. Díez, Eduardo
  3. Almendras, Brigitte
  4. Gómez, José María
  5. Rodríguez, Araceli
Revista:
Journal of Sustainable Metallurgy

ISSN: 2199-3823 2199-3831

Año de publicación: 2023

Tipo: Artículo

DOI: 10.1007/S40831-022-00644-3 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Journal of Sustainable Metallurgy

Resumen

The aim of this paper is to employ a factorial design to optimize the activation step in the synthesis process of a mesoporousactivated carbon to be used as adsorbent for removing and recovering cobalt ions from aqueous solutions. This activationhas been carried out in a tubular furnace in the presence of an air stream, following a 23 factorial design. According to theobtained results, the best activation conditions to reach a maximum cobalt removal are mild conditions, low activationtemperatures and large times, while the air fow seems to be positive infuence working in a low level. This is due to theenhancement of superfcial oxygenated groups formation in these conditions, responsible of the adsorption process. Thekinetic curve obtained for the adsorbent prepared at the most favorable conditions showed that the adsorption process wasvery fast and efcient, reaching equilibrium in 15 min, and was properly described by a pseudo-second-order kinetic, typical of the processes in which there are no difusion limitations. Additionally, with the aim of studying the potential of metalrecovery, desorption studies were performed. Sulfuric acid as stripping agent led to twofold Co preconcentration ratio, byreducing the desorption volume to the quarter.

Referencias bibliográficas

  • Eddy M (2001) Ingeniería de aguas residuales. McGraw-Hill, New York
  • Brutland (1987) Report of the World Commission on Environment and Development
  • Endo A, Tsurita I, Burnett K, Orencio PM (2017) A review of the current state of research on the water, energy, and food nexus. J Hydrol 11:20–30. https://doi.org/10.1016/j.ejrh.2015.11.010
  • Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4:361–377. https://doi.org/10.1016/j.arabjc.2010.07.019
  • Kurniawan TA, Chan GYS, Lo W-H, Babel S (2006) Physico–chemical treatment techniques for wastewater laden with heavy metals. Chem Eng J 118:83–98. https://doi.org/10.1016/j.cej.2006.01.015
  • Programme UNE, Panel IR (2011) Recycling rates of metals: a status report
  • International Energy Agency (2021) The role of critical minerals in clean energy transitions. World Energy Outlook Special Report
  • Patricia AD, Darina B, Claudiu P, Nikolaos A (2018) Cobalt: demand-supply balances in the transition to electric mobility
  • Scheele F, de Haan E, Kiezebrink V (2016) Cobalt blues environmental pollution and human rights violations in Katanga’s copper and cobalt mines. SOMO. https://www.somo.nl/cobalt-blues/
  • Botelho Junior AB, Stopic S, Friedrich B et al (2021) Cobalt recovery from Li-ion battery recycling: a critical review. Metals 11:1999. https://doi.org/10.3390/met11121999
  • Swain B (2017) Recovery and recycling of lithium: a review. Sep Purif Technol 172:388–403. https://doi.org/10.1016/j.seppur.2016.08.031
  • Gunatilake S (2015) Methods of removing heavy metals from industrial wastewater. J Multidicipl Eng Sci Stud 1:12–18
  • Budnyak TM, Piątek J, Pylypchuk IV et al (2020) Membrane-filtered kraft lignin-silica hybrids as bio-based sorbents for cobalt(II) ion recycling. ACS Omega 5:10847–10856. https://doi.org/10.1021/acsomega.0c00492
  • Liu Y, Liu Y, Tang L et al (2019) Chapter 3—Mesoporous carbon-based composites for adsorption of heavy metals. In: Tang L, Deng Y, Wang J et al (eds) Nanohybrid and nanoporous materials for aquatic pollution control. Elsevier, Amsterdam, pp 63–102
  • Díez E, Gómez JM, Rodríguez A et al (2020) A new mesoporous activated carbon as potential adsorbent for effective indium removal from aqueous solutions. Microporous Mesoporous Mater 295:109984. https://doi.org/10.1016/j.micromeso.2019.109984
  • Galán J, Rodríguez A, Gómez JM et al (2013) Reactive dye adsorption onto a novel mesoporous carbon. Chem Eng J 219:62–68. https://doi.org/10.1016/j.cej.2012.12.073
  • Kyotani T (2000) Control of pore structure in carbon. Carbon 38(2):269–286. https://doi.org/10.1016/S0008-6223(99)00142-6
  • Lu A-H, Zhao D (2009) Nanocasting: a versatile strategy for creating nanostructured porous materials. RSC Publishing, Cambridge
  • Stathi P, Dimos K, Karakassides MA, Deligiannakis Y (2010) Mechanism of heavy metal uptake by a hybrid MCM-41 material: surface complexation and EPR spectroscopic study. J Colloid Interface Sci 343:374–380. https://doi.org/10.1016/j.jcis.2009.11.029
  • Barczak M, Michalak-Zwierz K, Gdula K et al (2015) Ordered mesoporous carbons as effective sorbents for removal of heavy metal ions. Microporous Mesoporous Mater 211:162–173. https://doi.org/10.1016/j.micromeso.2015.03.010
  • Boumessaidia S, Cheknane B, Bouchenafa-Saïb N et al (2019) Elimination of cobalt (II) by adsorption on mesoporous materials and carbons of types SBA-15, CMI-1. Alger J Environ Sci Technol 5:1046–1054
  • Siddiqui MN, Chanbasha B, Al-Arfaj AA et al (2021) Super-fast removal of cobalt metal ions in water using inexpensive mesoporous carbon obtained from industrial waste material. Environ Technol Innov. https://doi.org/10.1016/j.eti.2020.101257
  • Montgomery DC (2008) Design and analysis of experiments. Wiley, New York
  • Krishnan A, Anirudhan T (2008) Kinetic and equilibrium modelling of cobalt(II) adsorption onto bagasse pith based sulphurised activated carbon. Chem Eng J 137:257–264. https://doi.org/10.1016/j.cej.2007.04.029
  • Thommes M, Kaneko K, Neimark AV et al (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117
  • Wu Z, Webley PA, Zhao D (2010) Comprehensive study of pore evolution, mesostructural stability, and simultaneous surface functionalization of ordered mesoporous carbon (FDU-15) by wet oxidation as a promising adsorbent. Langmuir 26:10277–10286. https://doi.org/10.1021/la100455w
  • Hadoun H, Sadaoui Z, Souami N et al (2013) Characterization of mesoporous carbon prepared from date stems by H3PO4 chemical activation. Appl Surf Sci 280:1–7. https://doi.org/10.1016/j.apsusc.2013.04.054
  • Gómez JM, Díez E, Bernabé I et al (2018) Effective adsorptive removal of cobalt using mesoporous carbons synthesized by silica gel replica method. Environ Process 5:225–242. https://doi.org/10.1007/s40710-018-0304-9
  • Pretsch E, Buhlmann P, Badertscher M (2009) Structure determination of organic compounds. Springer-Verlag, Berlin, pp 1–88
  • Hesse M (2005) Métodos espectroscópicos en química orgánica, 2a ed. act. y amp. Síntesis, Madrid
  • Galán del Álamo J (2013) Preparación y síntesis de materiales adsorbentes para la eliminación de contaminantes en efluentes acuosos. Info:eu-repo/semantics/doctoralThesis, Universidad Complutense de Madrid
  • Pavel CC, Vuono D, Asaftei IV et al (2005) Study of the thermal dehydration of metal-exchange ETS-10 titanosilicate. In: Čejka J, Žilková N, Nachtigall P (eds) Studies in surface science and catalysis. Elsevier, Amsterdam, pp 805–812
  • Worch E (2012) Adsorption technology in water treatment: fundamentals, processes, and modeling. Walter de Gruyter, Berlin
  • Simonin J-P (2016) On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem Eng J 300:254–263. https://doi.org/10.1016/j.cej.2016.04.079
  • Aharoni C, Tompkins FC (1970) Kinetics of adsorption and desorption and the Elovich equation. In: Eley DD, Pines H, Weisz PB (eds) Advances in catalysis. Academic Press, New York, pp 1–49
  • Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div 89:31–59. https://doi.org/10.1061/JSEDAI.0000430
  • Yu F, Wu Y, Li X (2012) Kinetic and thermodynamic studies of toluene, ethylbenzene, and m-xylene adsorption from aqueous solutions onto KOH-activated multiwalled carbon nanotubes. J Agric Food Chem. https://doi.org/10.1021/jf304104z
  • Saadi R, Saadi Z, Fazaeli R, Fard N (2015) Monolayer and multilayer adsorption isotherm models for sorption from aqueous media. Korean J Chem Eng. https://doi.org/10.1007/s11814-015-0053-7
  • Ghaemi A, Torab-Mostaedi M, Shahhosseini S, Asadollahzadeh M (2013) Characterization of Ag(I), Co(II) and Cu(II) removal process from aqueous solutions using dolomite powder. Korean J Chem Eng 30:172–180. https://doi.org/10.1007/s11814-012-0113-1
  • Jin Y, Wu Y, Cao J, Wu Y (2015) Adsorption behavior of Cr(VI), Ni(II), and Co(II) onto zeolite 13x. Desalin Water Treat 54:511–524. https://doi.org/10.1080/19443994.2014.883333
  • Yuan S, Xi Z, Jiang Y et al (2007) Desorption of copper and cadmium from soils enhanced by organic acids. Chemosphere 68:1289–1297. https://doi.org/10.1016/j.chemosphere.2007.01.046