Calentamiento por láser: una técnica mínimamente invasiva para el estudio del calentamiento producido por el fuego en materiales pétreos de construcción

  1. Gómez Heras, Miguel
  2. Fort González, Rafael
  3. Morcillo Linares, Manuel
  4. Molpeceres, C.
  5. Ocaña, José L.
Revista:
Materiales de construcción

ISSN: 0465-2746

Año de publicación: 2008

Título del ejemplar: Piedra natural

Volumen: 58

Número: 289-290

Páginas: 203-217

Tipo: Artículo

DOI: 10.3989/MC.2008.V58.I289-290.82 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Materiales de construcción

Resumen

El fuego es una de las amenazas más importantes para los edificios debido a la escala de pérdidas irreparables que genera. Los estudios sobre los efectos del fuego se han dirigido recientemente hacia escalas de observación más detalladas, que son más adecuadas para el estudio de muestras de edificios patrimoniales, como microfisuración y cambios mineralógicos y químicos. Las técnicas de simulación de fuegos empleadas hasta ahora (ensayos con hornos y llamas reales) presentan varias limitaciones como, por ejemplo, la falta de repetibilidad, ausencia de sub-productos de combustión o, especialmente, el uso de muestras de gran tamaño. Por esta última razón, es importante encontrar técnicas en las que se pueda usar cantidades mínimas de muestra. Este artículo presenta la irradiación láser como una técnica adecuada para simular el ¿quemado¿ de materiales de construcción, ya que ofrece una física de calentamiento similar al fuego, repetibilidad de los experimentos y, sobre todo, utiliza menos cantidad de muestra. La irradiación láser permite concentrar una alta energía en un área pequeña, con lo que se pueden realizar ensayos a micro-escala en muestras pequeñas tomadas de edificios.

Referencias bibliográficas

  • [1] Goudie, A.S., Allison, R.J. & McLaren, S.J.: “The relations between modulus of elasticity and temperature in the context of the experimental simulation of rock weathering by fire”, Earth Surf. Proc. Land., 17 (1992), pp. 605-615. doi:10.1002/esp.3290170606
  • [2] Allison, R.J. & Goudie, A.S.: “The effects of fire on rock weathering: An experimental study”, in: D.A. Robinson y R.B.G. Williams (eds.), Rock Weathering and Landform Evolution. Wiley, Chichester, 1994, pp. 41-56.
  • [3] Chakrabarti, B., Yates, T. & Lewry, A.: “Effect of fire damage on natural stonework in buildings”. Constr. Build. Mater., 10(7) (1996), pp 539-544. doi:10.1016/0950-0618(95)00076-3
  • [4] Hajpál, M.: “Changes in Sandstones of Historical Monuments Exposed to Fire or High Temperature”, Fire Technol., 38(4) (2002), pp 373-382. doi:10.1023/A:1020174500861
  • [5] Hajpál, M.: “Effect of Fire Damage of Sandstones in Laboratory Conditions”, in: L. Aires-Barros, F. Zezza, A. Dionisio & M. Rodrigues (eds.), Influence of the Environment and Defense of the Territory on Recovery of Cultural Heritage. Lectures and Proceedings of the 6th International Symposium on the Conservation of Monuments in the Mediterranean Basin, Lisboa, 2004, pp. 267-272.
  • [6] Hajpál, M. & Török, A.: “Mineralogical and colour changes of quartz sandstones by heat”, Environ. Geol., 46 (2004), pp. 311-322.
  • [7] Gomez-Heras, M., Hajpál, M., Álvarez de Buergo, M., Török, A., Fort, R., & Varas, M.J.: “Evolution of porosity in Hungarian building stones after simulated burning”. in: R. Fort, M. Álvarez de Buergo, M. Gomez-Heras & C. Vazquez-Calvo (eds.), Heritage Weathering and Conservation HWC-2006. Taylor & Francis, Rotterdam, (2006), pp. 513-519.
  • [8] McCabe, S., Smith, B.J. & Warke, P.A.: “Preliminary observations on the impact of complex stress histories on the response of sandstone to salt weathering: laboratory simulations of process combinations”, Environ. Geol., 52 (2007), pp. 251-258. doi:10.1007/s00254-006-0531-7
  • [9] McCabe, S., Smith, B.J. & Warke, P.A.: “A legacy of mistreatment: understanding the decay of medieval sandstones in NE Ireland”, Build. Environ., In press.
  • [10] McCabe, S., Smith, B. J. & Warke, P. A.: “Sandstone response to salt weathering following simulated fire damage: a comparison of the effects of furnace heating and fire”. Earth Surf. Proc. Land., 32 (2007), pp. 1874-1873. doi:10.1002/esp.1503
  • [11] Ollier, C.D. & Ash, J.E.: “Fire and rock breakdown”. Zeitschr. Geomorphologie N. F., 27(3) (1983), pp. 363-374.
  • [12] Yuen, W.W. & Chow, W.K.: “The role of thermal radiation on the initiation of flashover in a compartment fire”. Int. J. Heat Mass Tran., 47(19-20) (2004), pp. 4265-4276. doi:10.1016/j.ijheatmasstransfer.2004.05.017
  • [13] Yuen, W.W. & Tien, C.L.: “A simplified calculation scheme for the luminous flame emissivity”, In: Proceeding of the 16th Symposium (International) of Combustion, Combustion Institute, Pittsburgh (1976), pp. 1481–1487
  • [14] Gómez-Heras, M., Varas, M.J., Alvarez de Buergo, M. & Fort, R.: “Characterization of changes in matrix of sandstones affected by historical fires” in: D. Kwiatkowski & R. Löfvendahl (eds.), 10th International Congress on Deterioration and Conservation of Stone, Stockholm (2004), pp. 561-568.
  • [15] Gómez-Heras, M.: Procesos y formas de deterioro térmico en piedra natural del patrimonio arquitectónico. Madrid: UCM, Servicio de Publicaciones, 2006. http://www.ucm.es/BUCM/tesis/geo/ucm-t28551.pdf Last access 15/10/07
  • [16] Warke, P.A. & Smith, B.J.: “Effects of direct and indirect heating on the validity of rock weathering simulation studies and durability tests”. Geomorphology, 22(3-4) (1998), pp. 347-357. doi:10.1016/S0169-555X(97)00078-0
  • [17] Gómez-Heras M, Smith BJ, & Fort R: Surface temperature differences between minerals in crystalline rocks: implications for granular disaggregation of granites through thermal fatigue. Geomorphology 78(3-4) (2006), pp. 236-249. doi:10.1016/j.geomorph.2005.12.013
  • [18] Gomez-Heras, M., Álvarez de Buergo, M., Varas, M.J., Fort, R., Morcillo, M. & Molpeceres, C.: “Fire damage of heritage building stones: methodological considerations on current research”, in: G. Mileva & M. Hristova (eds.), Built Heritage: Fire Loss to Historic Buildings, SKALA, Varna (2006), pp. 132-141.
  • [19] Buj, O & Gisbert, J.: “Petrophysical characterization of three commercial varieties of Miocene sandstones from the Ebro valley”, Mater. Construcc vol 57, nº 287 (2007), pp. 63-74.