Clinical Trials Involving Chemotherapy-Based Nanocarriers in Cancer Therapy: State of the Art and Future Directions

  1. Lopez-Mendez, Tania B.
  2. Strippoli, Raffaele
  3. Trionfetti, Flavia
  4. Calvo, Pilar
  5. Cordani, Marco 1
  6. Gonzalez-Valdivieso, Juan
  1. 1 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

Libro:
Cancer Nanotechnology

Editorial: Springer

ISBN: 9783031178306 9783031178313

Año de publicación: 2022

Páginas: 325-383

Tipo: Capítulo de Libro

DOI: 10.1007/978-3-031-17831-3_12 GOOGLE SCHOLAR lock_openAcceso abierto editor

Resumen

Despite significant achievements in cancer treatment, it remains a challenging burden, and there is limited success in the clinical therapy. In recent years, progress in nanotechnology provides plenty of tools to counteract cancer with innovative nanomedicines that can be exploited in intracellular drug delivery. Specifically, the design and development of nanomaterials, such as nanoparticles and hydrogels, aim at achieving smart nanosystems with great multifunctionality and therapeutic potential. In this context, advances in tailored biomaterials for drug delivery as cancer treatment include new strategies to overcome the obstacles and limitations usually encountered with traditional therapeutic agents, thereby reducing the lack of selectivity and side effects. Hence, a big effort is being invested in designing and developing more accurate strategies toward personalized medicine, which has emerged as a promising therapeutic approach with a wide potential to increase treatment outcomes and patient survival. In this chapter, we provide a comprehensive analysis and discuss the development of advanced nanocarriers involving chemotherapeutic agents in clinical trials against multiple types of cancer. We also focus on some reasons that could explain why some treatments fail in clinics.

Referencias bibliográficas

  • Agrawal, N. K., Allen, P., Song, Y. H., Wachs, R. A., Du, Y., Ellington, A. D., & Schmidt, C. E. (2020). Oligonucleotide-functionalized hydrogels for sustained release of small molecule (aptamer) therapeutics. Acta Biomaterialia, 102, 315–325.
  • Aguado, B. A., Grim, J. C., Rosales, A. M., Watson-Capps, J. J., & Anseth, K. S. (2018). Engineering precision biomaterials for personalized medicine. Science Translational Medicine, 10, eaam8645.
  • Ahmad, A., Wang, Y. F., & Ahmad, I. (2005). Separation of liposome-entrapped mitoxantrone from nonliposomal mitoxantrone in plasma: Pharmacokinetics in mice. Methods in Enzymology, 391, 176–185.
  • Alyautdin, R., Khalin, I., Nafeeza, M. I., Haron, M. H., & Kuznetsov, D. (2014). Nanoscale drug delivery systems and the blood-brain barrier. International Journal of Nanomedicine, 9, 795–811.
  • Anselmo, A. C., & Mitragotri, S. (2019). Nanoparticles in the clinic: An update. Bioengineering & Translational Medicine, 4, e10143.
  • Anselmo, A. C., & Mitragotri, S. (2021). Nanoparticles in the clinic: An update post COVID-19 vaccines. Bioengineering Translational Medicine, 6, e10246.
  • Arias, L. S., Pessan, J. P., Vieira, A. P. M., Lima, T. M. T., Delbem, A. C. B., & Monteiro, D. R. (2018). Iron oxide nanoparticles for biomedical applications: A perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics, 7(2), 46.
  • Autio, K. A., Dreicer, R., Anderson, J., Garcia, J. A., Alva, A., Hart, L. L., Milowsky, M. I., Posadas, E. M., Ryan, C. J., Graf, R. P., Dittamore, R., Schreiber, N. A., Summa, J. M., Youssoufian, H., Morris, M. J., & Scher, H. I. (2018). Safety and efficacy of BIND-014, a docetaxel nanoparticle targeting prostate-specific membrane antigen for patients with metastatic castration-resistant prostate cancer: A phase 2 clinical trial. JAMA Oncology, 4, 1344–1351.
  • Awasthi, R., Roseblade, A., Hansbro, P. M., Rathbone, M. J., Dua, K., & Bebawy, M. (2018). Nanoparticles in cancer treatment: Opportunities and obstacles. Current Drug Targets, 19, 1696–1709.
  • Baguley, B. C. (2010). Multidrug resistance in cancer. Methods in Molecular Biology, 596, 1–14.
  • Bai, L., Gao, C., Liu, Q., Yu, C., Zhang, Z., Cai, L., Yang, B., Qian, Y., Yang, J., & Liao, X. (2017). Research progress in modern structure of platinum complexes. European Journal of Medicinal Chemistry, 140, 349–382.
  • Barenholz, Y. (2012). Doxil®-the first FDA-approved nano-drug: Lessons learned. Journal of Controlled Release, 160, 117–134.
  • Baron, J. A. (2012). Screening for cancer with molecular markers: Progress comes with potential problems. Nature Reviews Cancer, 12, 368–371.
  • Baselga, J., Manikhas, A., Cortés, J., Llombart, A., Roman, L., Semiglazov, V. F., Byakhov, M., Lokanatha, D., Forenza, S., Goldfarb, R. H., Matera, J., Azarnia, N., Hudis, C. A., & Rozencweig, M. (2014). Phase III trial of nonpegylated liposomal doxorubicin in combination with trastuzumab and paclitaxel in HER2-positive metastatic breast cancer. Annals of Oncology, 25, 592–598.
  • Batist, G., Barton, J., Chaikin, P., Swenson, C., & Welles, L. (2002). Myocet (liposome-encapsulated doxorubicin citrate): A new approach in breast cancer therapy. Expert Opinion on Pharmacotherapy, 3, 1739–1751.
  • Bayda, S., Adeel, M., Tuccinardi, T., Cordani, M., & Rizzolio, F. (2019). The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine. Molecules, 25(1), 112.
  • Bernstein, Z. P., Rios, A., Scadden, D., Groopman, J., Northfelt, D., Lang, W., Fischl, M., Cohen, P., Bock, A., & Gill, P. (1998). A multicenter, phase II/III study of Atragen™ (Tretinoin Liposomal) in patients with AIDS-associated Kaposi’s sarcoma. JAIDS Journal of Acquired Immune Deficiency Syndromes, 17, A24.
  • Bhagat, A., & Kleinerman, E. S. (2020). Anthracycline-induced cardiotoxicity: Causes, mechanisms, and prevention. Advances in Experimental Medicine and Biology, 1257, 181–192.
  • Binaschi, M., Zunino, F., & Capranico, G. (1995). Mechanism of action of DNA topoisomerase inhibitors. Stem Cells, 13, 369–379.
  • Blair, H. A. (2018). Daunorubicin/Cytarabine liposome: A review in acute myeloid leukaemia. Drugs, 78, 1903–1910.
  • Blanco, E., Shen, H., & Ferrari, M. (2015). Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nature Biotechnology, 33, 941–951.
  • Bobo, D., Robinson, K. J., Islam, J., Thurecht, K. J., & Corrie, S. R. (2016). Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharmaceutical Research, 33, 2373–2387.
  • Bolger, G. T., Licollari, A., Tan, A., Greil, R., Vcelar, B., Greil-Ressler, S., Weiss, L., Schönlieb, C., Magnes, T., Radl, B., Majeed, M., & Sordillo, P. P. (2019). Pharmacokinetics of liposomal curcumin (Lipocurc™) infusion: Effect of co-medication in cancer patients and comparison with healthy individuals. Cancer Chemotherapy and Pharmacology, 83, 265–275.
  • Booser, D. J., Esteva, F. J., Rivera, E., Valero, V., Esparza-Guerra, L., Priebe, W., & Hortobagyi, G. N. (2002). Phase II study of liposomal annamycin in the treatment of doxorubicin-resistant breast cancer. Cancer Chemotherapy and Pharmacology, 50, 6–8.
  • Boulikas, T. (2009). Clinical overview on Lipoplatin: A successful liposomal formulation of cisplatin. Expert Opinion on Investigational Drugs, 18, 1197–1218.
  • Boulikas, T., Stathopoulos, G. P., Volakakis, N., & Vougiouka, M. (2005). Systemic Lipoplatin infusion results in preferential tumor uptake in human studies. Anticancer Research, 25, 3031–3039.
  • Braal, C. L., de Bruijn, P., Atrafi, F., van Geijn, M., Rijcken, C. J. F., Mathijssen, R. H. J., & Koolen, S. L. W. (2018). A new method for the determination of total and released docetaxel from docetaxel-entrapped core-crosslinked polymeric micelles (CriPec®) by LC-MS/MS and its clinical application in plasma and tissues in patients with various tumours. Journal of Pharmaceutical and Biomedical Analysis, 161, 168–174.
  • Bradner, W. T. (2001). Mitomycin C: A clinical update. Cancer Treatment Reviews, 27, 35–50.
  • Brandes, A. A., Bartolotti, M., Tosoni, A., & Franceschi, E. (2016). Nitrosoureas in the management of malignant gliomas. Current Neurology and Neuroscience Reports, 16, 13.
  • Brandsma, D., Milojkovic Kerklaan, B., Diéras, V., Altintas, S., Anders, C. K., Arnedos Ballester, M., Gelderblom, H., Soetekouw, P. M. M. B., Gladdines, W., Lonnqvist, F., Jager, A., van Linde, M. E., Schellens, J., & Aftimos, P. (2014). Phase 1/2A study of glutathione pegylated liposomal doxorubicin (2b3-101) in patients with brain metastases (bm) from solid tumors or recurrent high grade gliomas (HGG). Annals of Oncology, 25, iv157.
  • Brewer, J. R., Morrison, G., Dolan, M. E., & Fleming, G. F. (2016). Chemotherapy-induced peripheral neuropathy: Current status and progress. Gynecologic Oncology, 140, 176–183.
  • Brown, S. B., Wang, L., Jungels, R. R., & Sharma, B. (2020). Effects of cartilage-targeting moieties on nanoparticle biodistribution in healthy and osteoarthritic joints. Acta Biomaterialia, 101, 469–483.
  • Bukowski, K., Kciuk, M., & Kontek, R. (2020). Mechanisms of multidrug resistance in cancer chemotherapy. International Journal of Molecular Sciences, 21(9), 3233.
  • Bulbake, U., Doppalapudi, S., Kommineni, N., & Khan, W. (2017). Liposomal formulations in clinical use: An updated review. Pharmaceutics, 9(2), 12.
  • Byrne, J. D., Betancourt, T., & Brannon-Peppas, L. (2008). Active targeting schemes for nanoparticle systems in cancer therapeutics. Advanced Drug Delivery Reviews, 60, 1615–1626.
  • Caballero, D., Abreu, C. M., Lima, A. C., Neves, N. N., Reis, R. L., & Kundu, S. C. (2022). Precision biomaterials in cancer theranostics and modelling. Biomaterials, 280, 121299.
  • Caldorera-Moore, M., Vela Ramirez, J. E., & Peppas, N. A. (2019). Transport and delivery of interferon-α through epithelial tight junctions via pH-responsive poly(methacrylic acid-grafted-ethylene glycol) nanoparticles. Journal of Drug Targeting, 27, 582–589.
  • Caliceti, P., & Matricardi, P. (2019). Advances in drug delivery and biomaterials: Facts and vision. Pharmaceutics, 11(1), 48.
  • Cao, J., Huang, D., & Peppas, N. A. (2020). Advanced engineered nanoparticulate platforms to address key biological barriers for delivering chemotherapeutic agents to target sites. Advanced Drug Delivery Reviews, 167, 170–188.
  • Carie, A., Rios-Doria, J., Costich, T., Burke, B., Slama, R., Skaff, H., & Sill, K. (2011). IT-141, a polymer micelle encapsulating SN-38, induces tumor regression in multiple colorectal cancer models. Journal of drug delivery, 2011, 869027.
  • Carvalho, C., Santos., R. X., Cardoso, S., Correia, S., Oliveira, P. J., Santos, M. S., & Moreira, P. I. (2009). Doxorubicin: The good, the bad and the ugly effect. Current Medicinal Chemistry, 16, 3267–3285.
  • Chamberlain, M. C., Kormanik, P., Howell, S. B., & Kim, S. (1995). Pharmacokinetics of intralumbar DTC-101 for the treatment of leptomeningeal metastases. Archives of Neurology, 52, 912–917.
  • Chang, Y. J., Chang, C. H., Chang, T. J., Yu, C. Y., Chen, L. C., Jan, M. L., Luo, T. Y., Lee, T. W., & Ting, G. (2007). Biodistribution, pharmacokinetics and microSPECT/CT imaging of 188Re-bMEDA-liposome in a C26 murine colon carcinoma solid tumor animal model. Anticancer Research, 27, 2217–2225.
  • Chawla, S. P., Goel, S., Chow, W., Braiteh, F., Singh, A. S., Olson, J. E. G., Osada, A., Bobe, I., & Riedel, R. F. (2020). A phase 1b dose escalation trial of NC-6300 (nanoparticle epirubicin) in patients with advanced solid tumors or advanced, metastatic, or unresectable soft-tissue sarcoma. Clinical Cancer Research, 26, 4225–4232.
  • Chen, X., Wu, Y., Dong, H., Zhang, C. Y., & Zhang, Y. (2013). Platinum-based agents for individualized cancer treatment. Current Molecular Medicine, 13, 1603–1612.
  • Cheng, Q., Wei, T., Farbiak, L., Johnson, L. T., Dilliard, S. A., & Siegwart, D. J. (2020). Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nature Nanotechnology, 15, 313–320.
  • Chou, A. J., Gupta, R., Bell, M. D., Riewe, K. O., Meyers, P. A., & Gorlick, R. (2013). Inhaled lipid cisplatin (ILC) in the treatment of patients with relapsed/progressive osteosarcoma metastatic to the lung. Pediatric Blood & Cancer, 60, 580–586.
  • Costa-Silva, T. A., Costa, I. M., Biasoto, H. P., Lima, G. M., Silva, C., Pessoa, A., & Monteiro, G. (2020). Critical overview of the main features and techniques used for the evaluation of the clinical applicability of L-asparaginase as a biopharmaceutical to treat blood cancer. Blood Reviews, 43, 100651.
  • Creixell, M., & Peppas, N. A. (2012). Co-delivery of siRNA and therapeutic agents using nanocarriers to overcome cancer resistance. Nano Today, 7, 367–379.
  • D’Cruz, O., Piacente, M., Huang, T., Faxon, S., Trieu, V., & Desai, N. (2009). Sequence-dependent enhancement of antitumor activity of the vascular disrupting agent ABI-011 by paclitaxel and bevacizumab. Cancer Research, 69, 5638–5638.
  • Daniel, D., & Crawford, J. (2006). Myelotoxicity from chemotherapy. Seminars in Oncology, 33, 74–85.
  • Das, A., & Ali, N. (2021). Nanovaccine: An emerging strategy. Expert Review of Vaccines, 20, 1273–1290.
  • Dasari, S., & Tchounwou, P. B. (2014). Cisplatin in cancer therapy: Molecular mechanisms of action. European Journal of Pharmacology, 740, 364–378.
  • Davis, M. E., Chen, Z. G., & Shin, D. M. (2008). Nanoparticle therapeutics: An emerging treatment modality for cancer. Nature Reviews Drug Discovery, 7, 771–782.
  • Deitcher, S., Cullis, P., Wong, M., & Choy, G. (2007). Vinorelbine liposomes injection results in greater tumor drug exposure compared to conventional vinorelbine in tumor-bearing nude mice. Molecular Cancer Therapeutics, 6, 109.
  • Desai, N. (2016). Nanoparticle albumin-bound paclitaxel (Abraxane®). In M. Otagiri & V. T. G. Chuang (Eds.), Albumin in medicine: Pathological and clinical applications (pp. 101–119). Springer.
  • Diethelm-Varela, B., Ai, Y., Liang, D., & Xue, F. (2019). Nitrogen mustards as anticancer chemotherapies: Historic perspective, current developments and future trends. Current Topics in Medicinal Chemistry, 19, 691–712.
  • Dinndorf, P. A., Gootenberg, J., Cohen, M. H., Keegan, P., & Pazdur, R. (2007). FDA drug approval summary: Pegaspargase (Oncaspar®) for the first-line treatment of children with acute lymphoblastic leukemia (ALL). The Oncologist, 12, 991–998.
  • Dou, Y., Hynynen, K., & Allen, C. (2017). To heat or not to heat: Challenges with clinical translation of thermosensitive liposomes. Journal of Controlled Release, 249, 63–73.
  • Dragovich, T., Mendelson, D., Kurtin, S., Richardson, K., Von Hoff, D., & Hoos, A. (2006). A phase 2 trial of the liposomal DACH platinum L-NDDP in patients with therapy-refractory advanced colorectal cancer. Cancer Chemotherapy and Pharmacology, 58, 759–764.
  • Drummond, D. C., Meyer, O., Hong, K., Kirpotin, D. B., & Papahadjopoulos, D. (1999). Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacological Reviews, 51, 691–743.
  • Duffaud, F., Borner, M., Chollet, P., Vermorken, J. B., Bloch, J., Degardin, M., Rolland, F., Dittrich, C., Baron, B., Lacombe, D., & Fumoleau, P. (2004). Phase II study of OSI-211 (liposomal lurtotecan) in patients with metastatic or loco-regional recurrent squamous cell carcinoma of the head and neck. An EORTC New Drug Development Group study. European Journal of Cancer, 40, 2748–2752.
  • Duflos, A., Kruczynski, A., & Barret, J. M. (2002). Novel aspects of natural and modified vinca alkaloids. Current Medicinal Chemistry Anti-Cancer Agents, 2, 55–70.
  • Ernstoff, M. S., Ma, W. W., Tsai, F. Y.-C., Munster, P. N., Zhang, T., Kamoun, W., Pipas, J. M., Chen, S., Santillana, S., & Askoxylakis, V. (2018). A phase 1 study evaluating the safety, pharmacology and preliminary activity of MM-310 in patients with solid tumors. Journal of Clinical Oncology, 36, TPS2604.
  • Falzone, L., Salomone, S., & Libra, M. (2018). Evolution of cancer pharmacological treatments at the turn of the third millennium. Frontiers in Pharmacology, 9, 1300.
  • Fang, J., Nakamura, H., & Maeda, H. (2011). The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Advanced Drug Delivery Reviews, 63, 136–151.
  • Farokhzad, O. C., & Langer, R. (2006). Nanomedicine: Developing smarter therapeutic and diagnostic modalities. Advanced Drug Delivery Reviews, 58, 1456–1459.
  • Fasol, U., Frost, A., Büchert, M., Arends, J., Fiedler, U., Scharr, D., Scheuenpflug, J., & Mross, K. (2012). Vascular and pharmacokinetic effects of EndoTAG-1 in patients with advanced cancer and liver metastasis. Annals of Oncology, 23, 1030–1036.
  • FDA Approves Onivyde Combo Regimen for Advanced Pancreatic Cancer. (2015). Oncology Times, 37, 8.
  • Fenton, O. S., Olafson, K. N., Pillai, P. S., Mitchell, M. J., & Langer, R. (2018). Advances in biomaterials for drug delivery. Advanced Materials, 30(29), e1705328.
  • Ferlay, J., Colombet, M., Soerjomataram, I., Parkin, D. M., Piñeros, M., Znaor, A., & Bray, F. (2021). Cancer statistics for the year 2020: An overview. International Journal of Cancer, 149(4), 778–789.
  • Forssen, E. A., & Ross, M. E. (1994). Daunoxome® treatment of solid tumors: Preclinical and clinical investigations. Journal of Liposome Research, 4, 481–512.
  • Froudarakis, M., Hatzimichael, E., Kyriazopoulou, L., Lagos, K., Pappas, P., Tzakos, A. G., Karavasilis, V., Daliani, D., Papandreou, C., & Briasoulis, E. (2013). Revisiting bleomycin from pathophysiology to safe clinical use. Critical Reviews in Oncology/Hematology, 87, 90–100.
  • Gabizon, A., Catane, R., Uziely, B., Kaufman, B., Safra, T., Cohen, R., Martin, F., Huang, A., & Barenholz, Y. (1994). Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Research, 54, 987–992.
  • Gabizon, A., Shmeeda, H., Tahover, E., Kornev, G., Patil, Y., Amitay, Y., Ohana, P., Sapir, E., & Zalipsky, S. (2020). Development of Promitil®, a lipidic prodrug of mitomycin c in PEGylated liposomes: From bench to bedside. Advanced Drug Delivery Reviews, 154–155, 13–26.
  • Gaillard, P. J., Appeldoorn, C. C., Dorland, R., van Kregten, J., Manca, F., Vugts, D. J., Windhorst, B., van Dongen, G. A., de Vries, H. E., Maussang, D., & van Tellingen, O. (2014). Pharmacokinetics, brain delivery, and efficacy in brain tumor-bearing mice of glutathione pegylated liposomal doxorubicin (2B3-101). PLoS One, 9, e82331.
  • Galm, U., Hager, M. H., Van Lanen, S. G., Ju, J., Thorson, J. S., & Shen, B. (2005). Antitumor antibiotics: Bleomycin, enediynes, and mitomycin. Chemical Reviews, 105, 739–758.
  • Gelderblom, H., Verweij, J., Nooter, K., & Sparreboom, A. (2001). Cremophor EL: The drawbacks and advantages of vehicle selection for drug formulation. European Journal of Cancer, 37, 1590–1598.
  • Gil, L., Shepard, R. C., Silberman, S. L., Zak, E. M., & Priebe, W. (2019). Clinical efficacy of L-annamycin, a liposomal formulated non-cross-resistant and non-cardiotoxic anthracycline in relapsed/refractory AML patients. Blood, 134, 5147–5147.
  • Gill, P. S., Wernz, J., Scadden, D. T., Cohen, P., Mukwaya, G. M., von Roenn, J. H., Jacobs, M., Kempin, S., Silverberg, I., Gonzales, G., Rarick, M. U., Myers, A. M., Shepherd, F., Sawka, C., Pike, M. C., & Ross, M. E. (1996). Randomized phase III trial of liposomal daunorubicin versus doxorubicin, bleomycin, and vincristine in AIDS-related Kaposi’s sarcoma. Journal of Clinical Oncology, 14, 2353–2364.
  • Giraud, B., Hebert, G., Deroussent, A., Veal, G. J., Vassal, G., & Paci, A. (2010). Oxazaphosphorines: New therapeutic strategies for an old class of drugs. Expert Opinion on Drug Metabolism & Toxicology, 6, 919–938.
  • Girotti, A., Escalera-Anzola, S., Alonso-Sampedro, I., González-Valdivieso, J., & Arias, F. J. (2020a). Aptamer-functionalized natural protein-based polymers as innovative biomaterials. Pharmaceutics, 12(11), 1115.
  • Girotti, A., Gonzalez-Valdivieso, J., Santos, M., Martin, L., & Arias, F. J. (2020b). Functional characterization of an enzymatically degradable multi-bioactive elastin-like recombinamer. International Journal of Biological Macromolecules, 164, 1640–1648.
  • Gonzalez-Valdivieso, J., Borrego, B., Girotti, A., Moreno, S., Brun, A., Bermejo-Martin, J. F., & Arias, F. J. (2020). A DNA vaccine delivery platform based on Elastin-Like recombinamer nanosystems for Rift Valley fever virus. Molecular Pharmaceutics, 17, 1608–1620.
  • Gonzalez-Valdivieso, J., Garcia-Sampedro, A., Hall, A. R., Girotti, A., Arias, F. J., Pereira, S. P., & Acedo, P. (2021a). Smart nanoparticles as advanced anti-Akt kinase delivery systems for pancreatic cancer therapy. ACS Applied Materials & Interfaces, 13, 55790–55805.
  • Gonzalez-Valdivieso, J., Girotti, A., Schneider, J., & Arias, F. J. (2021b). Advanced nanomedicine and cancer: Challenges and opportunities in clinical translation. International Journal of Pharmaceutics, 599, 120438.
  • Green, M. R., Manikhas, G. M., Orlov, S., Afanasyev, B., Makhson, A. M., Bhar, P., & Hawkins, M. J. (2006). Abraxane, a novel Cremophor-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Annals of Oncology, 17, 1263–1268.
  • Greene, J., & Hennessy, B. (2015). The role of anthracyclines in the treatment of early breast cancer. Journal of Oncology Pharmacy Practice, 21, 201–212.
  • Greish, K. (2010). Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods in Molecular Biology, 624, 25–37.
  • Grothey, A. (2003). Oxaliplatin-safety profile: Neurotoxicity. Seminars in Oncology, 30, 5–13.
  • Hamaguchi, T., Matsumura, Y., Nakanishi, Y., Muro, K., Yamada, Y., Shimada, Y., Shirao, K., Niki, H., Hosokawa, S., Tagawa, T., & Kakizoe, T. (2004). Antitumor effect of MCC-465, pegylated liposomal doxorubicin tagged with newly developed monoclonal antibody GAH, in colorectal cancer xenografts. Cancer Science, 95, 608–613.
  • Hamaguchi, T., Matsumura, Y., Suzuki, M., Shimizu, K., Goda, R., Nakamura, I., Nakatomi, I., Yokoyama, M., Kataoka, K., & Kakizoe, T. (2005). NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. British Journal of Cancer, 92, 1240–1246.
  • Hamaguchi, T., Kato, K., Yasui, H., Morizane, C., Ikeda, M., Ueno, H., Muro, K., Yamada, Y., Okusaka, T., Shirao, K., Shimada, Y., Nakahama, H., & Matsumura, Y. (2007). A phase I and pharmacokinetic study of NK105, a paclitaxel-incorporating micellar nanoparticle formulation. British Journal of Cancer, 97, 170–176.
  • Han, W., Chilkoti, A., & López, G. P. (2017). Self-assembled hybrid elastin-like polypeptide/silica nanoparticles enable triggered drug release. Nanoscale, 9, 6178–6186.
  • Harrington, K. J., Mohammadtaghi, S., Uster, P. S., Glass, D., Peters, A. M., Vile, R. G., & Stewart, J. S. (2001). Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes. Clinical Cancer Research, 7, 243–254.
  • He, C., Yue, H., Xu, L., Liu, Y., Song, Y., Tang, C., & Yin, C. (2020). siRNA release kinetics from polymeric nanoparticles correlate with RNAi efficiency and inflammation therapy via oral delivery. Acta Biomaterialia, 103, 213–222.
  • Helary, C., & Desimone, M. F. (2015). Recent advances in biomaterials for tissue engineering and controlled drug delivery. Current Pharmaceutical Biotechnology, 16, 635–645.
  • Ho, D., Quake, S. R., McCabe, E. R. B., Chng, W. J., Chow, E. K., Ding, X., Gelb, B. D., Ginsburg, G. S., Hassenstab, J., Ho, C. M., Mobley, W. C., Nolan, G. P., Rosen, S. T., Tan, P., Yen, Y., & Zarrinpar, A. (2020). Enabling technologies for personalized and precision medicine. Trends in Biotechnology, 38, 497–518.
  • Howes, P. D., Chandrawati, R., & Stevens, M. M. (2014). Bionanotechnology. Colloidal nanoparticles as advanced biological sensors. Science, 346, 1247390.
  • https://www.annalsofoncology.org/article/S0923-7534(19)585702/fulltext#relatedArticles. Accessed 12 Dec 2021.
  • https://www.iarc.who.int/. Accessed 27 Nov 2021.
  • Huang, K. W., Hsu, F. F., Qiu, J. T., Chern, G. J., Lee, Y. A., Chang, C. C., Huang, Y. T., Sung, Y. C., Chiang, C. C., Huang, R. L., Lin, C. C., Dinh, T. K., Huang, H. C., Shih, Y. C., Alson, D., Lin, C. Y., Lin, Y. C., Chang, P. C., Lin, S. Y., & Chen, Y. (2020). Highly efficient and tumor-selective nanoparticles for dual-targeted immunogene therapy against cancer. Science Advances, 6, eaax5032.
  • Hwang, J., Sullivan, M. O., & Kiick, K. L. (2020). Targeted drug delivery via the use of ECM-mimetic materials. Frontiers in Bioengineering and Biotechnology, 8, 69.
  • Islam, R., Maeda, H., & Fang, J. (2021). Factors affecting the dynamics and heterogeneity of the EPR effect: Pathophysiological and pathoanatomic features, drug formulations and physicochemical factors. Expert Opinion on Drug Delivery, 1–14.
  • Jabir, N. R., Anwar, K., Firoz, C. K., Oves, M., Kamal, M. A., & Tabrez, S. (2018). An overview on the current status of cancer nanomedicines. Current Medical Research and Opinion, 34, 911–921.
  • Jain, R. K., & Stylianopoulos, T. (2010). Delivering nanomedicine to solid tumors. Nature Reviews Clinical Oncology, 7, 653–664.
  • Jain, M. M., Gupte, S. U., Patil, S. G., Pathak, A. B., Deshmukh, C. D., Bhatt, N., Haritha, C., Govind, B. K., Bondarde, S. A., Digumarti, R., Bajpai, J., Kumar, R., Bakshi, A. V., Bhattacharya, G. S., Patil, P., Subramanian, S., Vaid, A. K., Desai, C. J., Khopade, A., Chimote, G., Bapsy, P. P., & Bhowmik, S. (2016). Paclitaxel injection concentrate for nanodispersion versus nab-paclitaxel in women with metastatic breast cancer: A multicenter, randomized, comparative phase II/III study. Breast Cancer Research & Treatment, 156, 125–134.
  • Jarrar, M., Gaynon, P. S., Periclou, A. P., Fu, C., Harris, R. E., Stram, D., Altman, A., Bostrom, B., Breneman, J., Steele, D., Trigg, M., Zipf, T., & Avramis, V. I. (2006). Asparagine depletion after pegylated E. coli asparaginase treatment and induction outcome in children with acute lymphoblastic leukemia in first bone marrow relapse: A Children’s Oncology Group study (CCG-1941). Pediatric Blood & Cancer, 47, 141–146.
  • Jiang, N., Wang, X., Yang, Y., & Dai, W. (2006). Advances in mitotic inhibitors for cancer treatment. Mini Reviews in Medicinal Chemistry, 6, 885–895.
  • Kager, L., Pötschger, U., & Bielack, S. (2010). Review of mifamurtide in the treatment of patients with osteosarcoma. Therapeutics and Clinical Risk Management, 6, 279–286.
  • Kato, K., Chin, K., Yoshikawa, T., Yamaguchi, K., Tsuji, Y., Esaki, T., Sakai, K., Kimura, M., Hamaguchi, T., Shimada, Y., Matsumura, Y., & Ikeda, R. (2012). Phase II study of NK105, a paclitaxel-incorporating micellar nanoparticle, for previously treated advanced or recurrent gastric cancer. Investigational New Drugs, 30, 1621–1627.
  • Kaye, S. B. (1998). New antimetabolites in cancer chemotherapy and their clinical impact. British Journal of Cancer, 78, 1–7.
  • Kemp, J. A., & Kwon, Y. J. (2021). Cancer nanotechnology: Current status and perspectives. Nano Convergence, 8, 34.
  • Kim, T.-Y., Kim, D.-W., Chung, J.-Y., Shin, S. G., Kim, S.-C., Heo, D. S., Kim, N. K., & Bang, Y.-J. (2004). Phase I and pharmacokinetic study of Genexol-PM, a Cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clinical Cancer Research, 10, 3708–3716.
  • Kim, S.-B., Zhang, Q., Sun, T., Seo, J. H., Lee, K. S., Kim, T.-Y., Tong, Z., Park, K. H., Moon, Y. W., Wang, S., Li, W., Yang, Y., Wang, J., Wang, X., Choi, J., Lee, J. E., Yoon, K. E., Chung, S., Xu, B., & Sohn, J. (2020). [OPTIMAL 3] A phase III trial to evaluate the efficacy and safety of DHP107 (Liporaxel, oral paclitaxel) compared to Taxol (IV paclitaxel) as first line therapy in patients with recurrent or metastatic HER2 negative breast cancer (BC) (NCT03315364). Journal of Clinical Oncology, 38, TPS1106.
  • Kirpotin, D. B., Tipparaju, S., Huang, Z. R., Kamoun, W. S., Pien, C., Kornaga, T., Oyama, S., Olivier, K., Marks, J. D., Koshkaryev, A., Schihl, S. S., Fetterly, G., Schoeberl, B., Noble, C., Hayes, M., & Drummond, D. C. (2016). Abstract 3912: MM-310, a novel EphA2-targeted docetaxel nanoliposome. Cancer Research, 76, 3912–3912.
  • Knight, F. C., Gilchuk, P., Kumar, A., Becker, K. W., Sevimli, S., Jacobson, M. E., Suryadevara, N., Wang-Bishop, L., Boyd, K. L., Crowe, J. E., Joyce, S., & Wilson, J. T. (2019). Mucosal immunization with a pH-responsive nanoparticle vaccine induces protective CD8(+) lung-resident memory T cells. ACS Nano, 13, 10939–10960.
  • Koo, M. M., Swann, R., McPhail, S., Abel, G. A., Elliss-Brookes, L., Rubin, G. P., & Lyratzopoulos, G. (2020). Presenting symptoms of cancer and stage at diagnosis: Evidence from a cross-sectional, population-based study. The Lancet Oncology, 21, 73–79.
  • Koukourakis, M. I., Koukouraki, S., Giatromanolaki, A., Kakolyris, S., Georgoulias, V., Velidaki, A., Archimandritis, S., & Karkavitsas, N. N. (2000). High intratumoral accumulation of stealth liposomal doxorubicin in sarcomas–rationale for combination with radiotherapy. Acta Oncologica, 39, 207–211.
  • Kraut, E. H., Fishman, M. N., Lorusso, P. M., Gordon, M. S., Rubin, E. H., Haas, A., Fetterly, G. J., Cullinan, P., Dul, J. L., & Steinberg, J. L. (2005). Final results of a phase I study of liposome encapsulated SN-38 (LE-SN38): Safety, pharmacogenomics, pharmacokinetics, and tumor response. Journal of Clinical Oncology, 23, 2017–2017.
  • Kulkarni, J. A., Witzigmann, D., Leung, J., Tam, Y. Y. C., & Cullis, P. R. (2019). On the role of helper lipids in lipid nanoparticle formulations of siRNA. Nanoscale, 11, 21733–21739.
  • Kushwah, V., Katiyar, S. S., Agrawal, A. K., Gupta, R. C., & Jain, S. (2018). Co-delivery of docetaxel and gemcitabine using PEGylated self-assembled stealth nanoparticles for improved breast cancer therapy. Nanomedicine, 14, 1629–1641.
  • Laginha, K. M., Verwoert, S., Charrois, G. J., & Allen, T. M. (2005). Determination of doxorubicin levels in whole tumor and tumor nuclei in murine breast cancer tumors. Clinical Cancer Research, 11, 6944–6949.
  • Lammers, T., Aime, S., Hennink, W. E., Storm, G., & Kiessling, F. (2011). Theranostic nanomedicine. Accounts of Chemical Research, 44, 1029–1038.
  • Lancet, J. E., Uy, G. L., Cortes, J. E., Newell, L. F., Lin, T. L., Ritchie, E. K., Stuart, R. K., Strickland, S. A., Hogge, D., Solomon, S. R., Stone, R. M., Bixby, D. L., Kolitz, J. E., Schiller, G. J., Wieduwilt, M. J., Ryan, D. H., Hoering, A., Chiarella, M., Louie, A. C., & Medeiros, B. C. (2016). Final results of a phase III randomized trial of CPX-351 versus 7+3 in older patients with newly diagnosed high risk (secondary) AML. Journal of Clinical Oncology, 34, 7000–7000.
  • Lancet, J. E., Uy, G. L., Cortes, J. E., Newell, L. F., Lin, T. L., Ritchie, E. K., Stuart, R. K., Strickland, S. A., Hogge, D., Solomon, S. R., Stone, R. M., Bixby, D. L., Kolitz, J. E., Schiller, G. J., Wieduwilt, M. J., Ryan, D. H., Hoering, A., Banerjee, K., Chiarella, M., Louie, A. C., & Medeiros, B. C. (2018). CPX-351 (cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia. Journal of Clinical Oncology, 36, 2684–2692.
  • Lawson, R., Staatz, C. E., Fraser, C. J., & Hennig, S. (2021). Review of the pharmacokinetics and pharmacodynamics of intravenous busulfan in paediatric patients. Clinical Pharmacokinetics, 60, 17–51.
  • Le, Z., Chen, Y., Han, H., Tian, H., Zhao, P., Yang, C., He, Z., Liu, L., Leong, K. W., Mao, H. Q., Liu, Z., & Chen, Y. (2018). Hydrogen-bonded tannic acid-based anticancer nanoparticle for enhancement of oral chemotherapy. ACS Applied Materials & Interfaces, 10, 42186–42197.
  • Lee, S. W., Yun, M. H., Jeong, S. W., In, C. H., Kim, J. Y., Seo, M. H., Pai, C. M., & Kim, S. O. (2011). Development of docetaxel-loaded intravenous formulation, Nanoxel-PM™ using polymer-based delivery system. Journal of Controlled Release, 155, 262–271.
  • Lee, H., Park, S., Kang, J. E., Lee, H. M., Kim, S. A., & Rhie, S. J. (2020). Efficacy and safety of nanoparticle-albumin-bound paclitaxel compared with solvent-based taxanes for metastatic breast cancer: A meta-analysis. Scientific Reports, 10, 530.
  • Leonard, R. C. F., Williams, S., Tulpule, A., Levine, A. M., & Oliveros, S. Y. (2009). Improving the therapeutic index of anthracycline chemotherapy: Focus on liposomal doxorubicin (Myocet). Breast, 18(4), 218–224.
  • Lepareur, N., Lacœuille, F., Bouvry, C., Hindré, F., Garcion, E., Chérel, M., Noiret, N., Garin, E., & Knapp, F. F. R. (2019). Rhenium-188 labeled radiopharmaceuticals: Current clinical applications in oncology and promising perspectives. Frontiers in Medicine, 6, 132.
  • Leung, A. K., Tam, Y. Y., Chen, S., Hafez, I. M., & Cullis, P. R. (2015). Microfluidic mixing: A general method for encapsulating macromolecules in lipid nanoparticle systems. The Journal of Physical Chemistry B, 119, 8698–8706.
  • Liang, X. J., Chen, C., Zhao, Y., & Wang, P. C. (2010). Circumventing tumor resistance to chemotherapy by nanotechnology. Methods in Molecular Biology, 596, 467–488.
  • Liu, Y., Li, K., Liu, B., & Feng, S. S. (2010). A strategy for precision engineering of nanoparticles of biodegradable copolymers for quantitative control of targeted drug delivery. Biomaterials, 31, 9145–9155.
  • Liu, X., Li, C., Lv, J., Huang, F., An, Y., Shi, L., & Ma, R. (2020). Glucose and H2O2 dual-responsive polymeric micelles for the self-regulated release of insulin. ACS Applied Biomaterials, 3, 1598–1606.
  • Luginbuhl, K. M., Mozhdehi, D., Dzuricky, M., Yousefpour, P., Huang, F. C., Mayne, N. R., Buehne, K. L., & Chilkoti, A. (2017). Recombinant synthesis of hybrid lipid-peptide polymer fusions that self-assemble and encapsulate hydrophobic drugs. Angewandte Chemie, 56, 13979–13984.
  • Ma, W. W., Zhu, M., Lam, E. T., Diamond, J. R., Dy, G. K., Fisher, G. A., Goff, L. W., Alberts, S., Bui, L. A., Sanghal, A., Kothekar, M., Khopade, A., Chimote, G., Faulkner, R., Eckhardt, S. G., Adjei, A. A., & Jimeno, A. (2021). A phase I pharmacokinetic and safety study of Paclitaxel Injection Concentrate for Nano-dispersion (PICN) alone and in combination with carboplatin in patients with advanced solid malignancies and biliary tract cancers. Cancer Chemotherapy and Pharmacology, 87, 779–788.
  • Madaan, A., Singh, P., Awasthi, A., Verma, R., Singh, A. T., Jaggi, M., Mishra, S. K., Kulkarni, S., & Kulkarni, H. (2013). Efficiency and mechanism of intracellular paclitaxel delivery by novel nanopolymer-based tumor-targeted delivery system, Nanoxel(TM). Clinical & Translational Oncology, 15, 26–32.
  • Madamsetty, V. S., Mukherjee, A., & Mukherjee, S. (2019). Recent trends of the bio-inspired nanoparticles in cancer theranostics. Frontiers in Pharmacology, 10, 1264.
  • Mahalingam, D., Nemunaitis, J. J., Malik, L., Sarantopoulos, J., Weitman, S., Sankhala, K., Hart, J., Kousba, A., Gallegos, N. S., Anderson, G., Charles, J., Rogers, J. M., Senzer, N. N., & Mita, A. C. (2014). Phase I study of intravenously administered ATI-1123, a liposomal docetaxel formulation in patients with advanced solid tumors. Cancer Chemotherapy and Pharmacology, 74, 1241–1250.
  • Makadia, H. K., & Siegel, S. J. (2011). Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers, 3, 1377–1397.
  • Malhotra, V., & Perry, M. C. (2003). Classical chemotherapy: Mechanisms, toxicities and the therapeutic window. Cancer Biology & Therapy, 2, S2–S4.
  • Mamot, C., Ritschard, R., Wicki, A., Stehle, G., Dieterle, T., Bubendorf, L., Hilker, C., Deuster, S., Herrmann, R., & Rochlitz, C. (2012). Tolerability, safety, pharmacokinetics, and efficacy of doxorubicin-loaded anti-EGFR immunoliposomes in advanced solid tumours: A phase 1 dose-escalation study. The Lancet Oncology, 13, 1234–1241.
  • Man, F., Lammers, T., & de Rosales, R. T. M. (2018). Imaging nanomedicine-based drug delivery: A review of clinical studies. Molecular Imaging and Biology, 20, 683–695.
  • Manshian, B. B., Jiménez, J., Himmelreich, U., & Soenen, S. J. (2017). Personalized medicine and follow-up of therapeutic delivery through exploitation of quantum dot toxicity. Biomaterials, 127, 1–12.
  • Mantripragada, S. (2002). A lipid based depot (DepoFoam technology) for sustained release drug delivery. Progress in Lipid Research, 41, 392–406.
  • Martino, E., Casamassima, G., Castiglione, S., Cellupica, E., Pantalone, S., Papagni, F., Rui, M., Siciliano, A. M., & Collina, S. (2018). Vinca alkaloids and analogues as anti-cancer agents: Looking back, peering ahead. Bioorganic & Medicinal Chemistry Letters, 28, 2816–2826.
  • Matsumoto, Y., Nichols, J. W., Toh, K., Nomoto, T., Cabral, H., Miura, Y., Christie, R. J., Yamada, N., Ogura, T., Kano, M. R., Matsumura, Y., Nishiyama, N., Yamasoba, T., Bae, Y. H., & Kataoka, K. (2016). Vascular bursts enhance permeability of tumour blood vessels and improve nanoparticle delivery. Nature Nanotechnology, 11, 533–538.
  • Matsumoto, T., Komori, T., Yoshino, Y., Ioroi, T., Kitahashi, T., Kitahara, H., Ono, K., Higuchi, T., Sakabe, M., Kori, H., Kano, M., Hori, R., Kato, Y., & Hagiwara, S. (2021). A liposomal gemcitabine, FF-10832, improves plasma stability, tumor targeting, and antitumor efficacy of gemcitabine in pancreatic cancer xenograft models. Pharmaceutical Research, 38, 1093–1106.
  • Matsumura, Y., & Maeda, H. (1986). A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Research, 46, 6387–6392.
  • Matsumura, Y., Gotoh, M., Muro, K., Yamada, Y., Shirao, K., Shimada, Y., Okuwa, M., Matsumoto, S., Miyata, Y., Ohkura, H., Chin, K., Baba, S., Yamao, T., Kannami, A., Takamatsu, Y., Ito, K., & Takahashi, K. (2004). Phase I and pharmacokinetic study of MCC-465, a doxorubicin (DXR) encapsulated in PEG immunoliposome, in patients with metastatic stomach cancer. Annals of Oncology, 15, 517–525.
  • Maulhardt, H. A., Marin, A. M., & diZerega, G. S. (2020). Intratumoral submicron particle docetaxel inhibits syngeneic Renca renal cancer growth and increases CD4+, CD8+, and Treg levels in peripheral blood. Investigational New Drugs, 38, 1618–1626.
  • Maulhardt, H., Marin, A., Hesseltine, H., & diZerega, G. (2021). Submicron particle docetaxel intratumoral injection in combination with anti-mCTLA-4 into 4T1-Luc orthotopic implants reduces primary tumor and metastatic pulmonary lesions. Medical Oncology, 38, 106.
  • Meyers, P. A., Schwartz, C. L., Krailo, M. D., Healey, J. H., Bernstein, M. L., Betcher, D., Ferguson, W. S., Gebhardt, M. C., Goorin, A. M., Harris, M., Kleinerman, E., Link, M. P., Nadel, H., Nieder, M., Siegal, G. P., Weiner, M. A., Wells, R. J., Womer, R. B., & Grier, H. E. (2008). Osteosarcoma: The addition of muramyl tripeptide to chemotherapy improves overall survival–a report from the Children’s Oncology Group. Journal of Clinical Oncology, 26, 633–638.
  • Miller, K., Cortes, J., Hurvitz, S. A., Krop, I. E., Tripathy, D., Verma, S., Riahi, K., Reynolds, J. G., Wickham, T. J., Molnar, I., & Yardley, D. A. (2016). HERMIONE: A randomized phase 2 trial of MM-302 plus trastuzumab versus chemotherapy of physician’s choice plus trastuzumab in patients with previously treated, anthracycline-naïve, HER2-positive, locally advanced/metastatic breast cancer. BMC Cancer, 16, 352.
  • Minelli, C., Lowe, S. B., & Stevens, M. M. (2010). Engineering nanocomposite materials for cancer therapy. Small, 6, 2336–2357.
  • Mitchell, E. P. (2006). Gastrointestinal toxicity of chemotherapeutic agents. Seminars in Oncology, 33, 106–120.
  • Mitchell, E. P., & Schein, P. S. (1986). Contributions of nitrosoureas to cancer treatment. Cancer Treatment Reports, 70, 31–41.
  • Mitchell, M. J., Jain, R. K., & Langer, R. (2017). Engineering and physical sciences in oncology: Challenges and opportunities. Nature Reviews Cancer, 17, 659–675.
  • Mitchell, M. J., Billingsley, M. M., Haley, R. M., Wechsler, M. E., Peppas, N. A., & Langer, R. (2021). Engineering precision nanoparticles for drug delivery. Nature Reviews Drug Discovery, 20, 101–124.
  • Moody, C. L., & Wheelhouse, R. T. (2014). The medicinal chemistry of imidazotetrazine prodrugs. Pharmaceuticals, 7, 797–838.
  • Moore, A., & Pinkerton, R. (2009). Vincristine: Can its therapeutic index be enhanced? Pediatric Blood & Cancer, 53, 1180–1187.
  • More, G. S., Thomas, A. B., Chitlange, S. S., Nanda, R. K., & Gajbhiye, R. L. (2019). Nitrogen mustards as alkylating agents: A review on chemistry, mechanism of action and current USFDA status of drugs. Anti-Cancer Agents in Medicinal Chemistry, 19, 1080–1102.
  • Mosca, L., Ilari, A., Fazi, F., Assaraf, Y. G., & Colotti, G. (2021). Taxanes in cancer treatment: Activity, chemoresistance and its overcoming. Drug Resistance Updates, 54, 100742.
  • Moudi, M., Go, R., Yien, C. Y., & Nazre, M. (2013). Vinca alkaloids. International Journal of Preventive Medicine, 4, 1231–1235.
  • Muggia, F., & Kudlowitz, D. (2014). Novel taxanes. Anti-Cancer Drugs, 25, 593–598.
  • Mullany, S., Miller, D. S., Robison, K., Levinson, K., Lee, Y. C., Yamada, S. D., Walker, J., Markman, M., Marin, A., Mast, P., & diZerega, G. (2020). Phase II study of intraperitoneal submicron particle paclitaxel (SPP) plus IV carboplatin and paclitaxel in patients with epithelial ovarian cancersurgery. Gynecologic Oncology Reports, 34, 100627.
  • Munster, P., Krop, I. E., LoRusso, P., Ma, C., Siegel, B. A., Shields, A. F., Molnár, I., Wickham, T. J., Reynolds, J., Campbell, K., Hendriks, B. S., Adiwijaya, B. S., Geretti, E., Moyo, V., & Miller, K. D. (2018). Safety and pharmacokinetics of MM-302, a HER2-targeted antibody-liposomal doxorubicin conjugate, in patients with advanced HER2-positive breast cancer: A phase 1 dose-escalation study. British Journal of Cancer, 119, 1086–1093.
  • Mylonakis, N., Athanasiou, A., Ziras, N., Angel, J., Rapti, A., Lampaki, S., Politis, N., Karanikas, C., & Kosmas, C. (2010). Phase II study of liposomal cisplatin (Lipoplatin) plus gemcitabine versus cisplatin plus gemcitabine as first line treatment in inoperable (stage IIIB/IV) non-small cell lung cancer. Lung Cancer, 68, 240–247.
  • Ngan, Y. H., & Gupta, M. (2016). A comparison between liposomal and nonliposomal formulations of doxorubicin in the treatment of cancer: An updated review. Archives of Pharmacy Practice, 7(1), 1–13.
  • Norouzi, M., Amerian, M., Amerian, M., & Atyabi, F. (2020). Clinical applications of nanomedicine in cancer therapy. Drug Discovery Today, 25, 107–125.
  • Northfelt, D. W., Dezube, B. J., Thommes, J. A., Miller, B. J., Fischl, M. A., Friedman-Kien, A., Kaplan, L. D., Du Mond, C., Mamelok, R. D., & Henry, D. H. (1998). Pegylated-liposomal doxorubicin versus doxorubicin, bleomycin, and vincristine in the treatment of AIDS-related Kaposi’s sarcoma: Results of a randomized phase III clinical trial. Journal of Clinical Oncology, 16, 2445–2451.
  • Octavia, Y., Tocchetti, C. G., Gabrielson, K. L., Janssens, S., Crijns, H. J., & Moens, A. L. (2012). Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. Journal of Molecular and Cellular Cardiology, 52, 1213–1225.
  • Park, H., Otte, A., & Park, K. (2021). Evolution of drug delivery systems: From 1950 to 2020 and beyond. Journal of Controlled Release, 342, 53–65.
  • Peres, C., Matos, A. I., Moura, L. I. F., Acúrcio, R. C., Carreira, B., Pozzi, S., Vaskovich-Koubi, D., Kleiner, R., Satchi-Fainaro, R., & Florindo, H. F. (2021). Preclinical models and technologies to advance nanovaccine development. Advanced Drug Delivery Reviews, 172, 148–182.
  • Peters, G. J., Schornagel, J. H., & Milano, G. A. (1993). Clinical pharmacokinetics of anti-metabolites. Cancer Surveys, 17, 123–156.
  • Peters, G. J., van der Wilt, C. L., van Moorsel, C. J., Kroep, J. R., Bergman, A. M., & Ackland, S. P. (2000). Basis for effective combination cancer chemotherapy with antimetabolites. Pharmacology & Therapeutics, 87, 227–253.
  • Petersen, G. H., Alzghari, S. K., Chee, W., Sankari, S. S., & La-Beck, N. M. (2016). Meta-analysis of clinical and preclinical studies comparing the anticancer efficacy of liposomal versus conventional non-liposomal doxorubicin. Journal of Controlled Release, 232, 255–264.
  • Petre, C. E., & Dittmer, D. P. (2007). Liposomal daunorubicin as treatment for Kaposi’s sarcoma. International Journal of Nanomedicine, 2, 277–288.
  • Pham, E., Birrer, M. J., Eliasof, S., Garmey, E. G., Lazarus, D., Lee, C. R., Man, S., Matulonis, U. A., Peters, C. G., Xu, P., Krasner, C., & Kerbel, R. S. (2015). Translational impact of nanoparticle–drug conjugate CRLX101 with or without bevacizumab in advanced ovarian cancer. Clinical Cancer Research, 21, 808–818.
  • Piha-Paul, S. A., Thein, K. Z., De Souza, P., Kefford, R., Gangadhar, T., Smith, C., Schuster, S., Zamboni, W. C., Dees, C. E., & Markman, B. (2021). First-in-human, phase I/IIa study of CRLX301, a nanoparticle drug conjugate containing docetaxel, in patients with advanced or metastatic solid malignancies. Investigational New Drugs, 39, 1047–1056.
  • Pillai, G., & Ceballos-Coronel, M. L. (2013). Science and technology of the emerging nanomedicines in cancer therapy: A primer for physicians and pharmacists. SAGE Open Medicine, 1, 2050312113513759.
  • Qiao, D., Chen, Y., & Liu, L. (2021). Engineered therapeutic nanovaccine against chronic hepatitis B virus infection. Biomaterials, 269, 120674.
  • Quail, D. F., & Joyce, J. A. (2013). Microenvironmental regulation of tumor progression and metastasis. Nature Medicine, 19, 1423–1437.
  • Quazi, M. Z., Lee, U., Park, S., Shin, S., Sim, E., Son, H., & Park, N. (2021). Cancer cell-specific enhanced Raman imaging and photothermal therapeutic effect based on reversibly pH-responsive gold nanoparticles. ACS Applied Biomaterials, 4, 8377–8385.
  • Ralhan, R., & Kaur, J. (2007). Alkylating agents and cancer therapy. Expert Opinion on Therapeutic Patents, 17, 1061–1075.
  • Ranade, A. A., Joshi, D. A., Phadke, G. K., Patil, P. P., Kasbekar, R. B., Apte, T. G., Dasare, R. R., Mengde, S. D., Parikh, P. M., Bhattacharyya, G. S., & Lopes, G. L. (2013). Clinical and economic implications of the use of nanoparticle paclitaxel (Nanoxel) in India. Annals of Oncology, 24, 6–12.
  • Regenold, M., Bannigan, P., Evans, J. C., Waspe, A., Temple, M. J., & Allen, C. (2021). Turning down the heat: The case for mild hyperthermia and thermosensitive liposomes. Nanomedicine: Nanotechnology, Biology, and Medicine, 40, 102484.
  • Rideau, E., Dimova, R., Schwille, P., Wurm, F. R., & Landfester, K. (2018). Liposomes and polymersomes: A comparative review towards cell mimicking. Chemical Society Reviews, 47, 8572–8610.
  • Riedel, R. F., Chua, V. S., Kim, T., Dang, J., Zheng, K., Moradkhani, A., Osada, A., & Chawla, S. P. (2021). Results of NC-6300 (nanoparticle epirubicin) in an expansion cohort of patients with angiosarcoma. Journal of Clinical Oncology, 39, 11543–11543.
  • Rugo, H. S., Pluard, T. J., Sharma, P., Melisko, M., Al-Jazayrly, G., Vidula, N., Ji, Y., Weng, D., Lim, H.-S., Yoon, K. E., & Cho, H. J. (2021). Abstract PS13-16: Pharmacokinetic evaluation of an oral paclitaxel DHP107 (Liporaxel®) in patients with recurrent or metastatic breast cancer (MBC): Phase II study (OPERA, NCT03326102). Cancer Research, 81, 13–16.
  • Safra, T. (2003). Cardiac safety of liposomal anthracyclines. The Oncologist, 8, 17–24.
  • Sanchez-Moreno, P., Ortega-Vinuesa, J. L., Peula-Garcia, J. M., Marchal, J. A., & Boulaiz, H. (2018). Smart drug-delivery systems for cancer nanotherapy. Current Drug Targets, 19, 339–359.
  • Sankhala, K. K., Mita, A. C., Adinin, R., Wood, L., Beeram, M., Bullock, S., Yamagata, N., Matsuno, K., Fujisawa, T., & Phan, A. (2009). A phase I pharmacokinetic (PK) study of MBP-426, a novel liposome encapsulated oxaliplatin. Journal of Clinical Oncology, 27, 2535.
  • Sarfraz, M., Afzal, A., Yang, T., Gai, Y., Raza, S. M., Khan, M. W., Cheng, Y., Ma, X., & Xiang, G. (2018). Development of dual drug loaded nanosized liposomal formulation by a reengineered ethanolic injection method and its pre-clinical pharmacokinetic studies. Pharmaceutics, 10(3), 151.
  • Saw, P. E., Yu, M., Choi, M., Lee, E., Jon, S., & Farokhzad, O. C. (2017). Hyper-cell-permeable micelles as a drug delivery carrier for effective cancer therapy. Biomaterials, 123, 118–126.
  • Seetharamu, N., Kim, E., Hochster, H., Martin, F., & Muggia, F. (2010). Phase II study of liposomal cisplatin (SPI-77) in platinum-sensitive recurrences of ovarian cancer. Anticancer Research, 30, 541–545.
  • Semple, S. C., Leone, R., Wang, J., Leng, E. C., Klimuk, S. K., Eisenhardt, M. L., Yuan, Z. N., Edwards, K., Maurer, N., Hope, M. J., Cullis, P. R., & Ahkong, Q. F. (2005). Optimization and characterization of a sphingomyelin/cholesterol liposome formulation of vinorelbine with promising antitumor activity. Journal of Pharmaceutical Sciences, 94, 1024–1038.
  • Senzer, N. N., Matsuno, K., Yamagata, N., Fujisawa, T., Wasserman, E., Sutherland, W., Sharma, S., & Phan, A. (2009). Abstract C36: MBP-426, a novel liposome-encapsulated oxaliplatin, in combination with 5-FU/leucovorin (LV): Phase I results of a Phase I/II study in gastro-esophageal adenocarcinoma, with pharmacokinetics. Molecular Cancer Therapeutics, 8, C36.
  • Sercombe, L., Veerati, T., Moheimani, F., Wu, S. Y., Sood, A. K., & Hua, S. (2015). Advances and challenges of liposome assisted drug delivery. Frontiers in Pharmacology, 6, 286.
  • Sethi, S., Ali, S., Philip, P. A., & Sarkar, F. H. (2013). Clinical advances in molecular biomarkers for cancer diagnosis and therapy. International Journal of Molecular Sciences, 14, 14771–14784.
  • Shae, D., Becker, K. W., Christov, P., Yun, D. S., Lytton-Jean, A. K. R., Sevimli, S., Ascano, M., Kelley, M., Johnson, D. B., Balko, J. M., & Wilson, J. T. (2019). Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy. Nature Nanotechnology, 14, 269–278.
  • Shetty, N., & Gupta, S. (2014). Eribulin drug review. South Asian Journal of Cancer, 3, 57–59.
  • Shi, J., Kantoff, P. W., Wooster, R., & Farokhzad, O. C. (2017). Cancer nanomedicine: Progress, challenges and opportunities. Nature Reviews Cancer, 17, 20–37.
  • Shi, Y., van der Meel, R., Chen, X., & Lammers, T. (2020). The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics, 10, 7921–7924.
  • Shreyash, N., Sonker, M., Bajpai, S., & Tiwary, S. K. (2021). Review of the mechanism of nanocarriers and technological developments in the field of nanoparticles for applications in cancer theragnostics. ACS Applied Biomaterials, 4, 2307–2334.
  • Sibaud, V., Lebœuf, N. R., Roche, H., Belum, V. R., Gladieff, L., Deslandres, M., Montastruc, M., Eche, A., Vigarios, E., Dalenc, F., & Lacouture, M. E. (2016). Dermatological adverse events with taxane chemotherapy. European Journal of Dermatology, 26, 427–443.
  • Silverman, J. A., & Deitcher, S. R. (2013). Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemotherapy and Pharmacology, 71, 555–564.
  • Sinha, B. K. (1995). Topoisomerase inhibitors. Drugs, 49, 11–19.
  • Slingerland, M., Guchelaar, H. J., Rosing, H., Scheulen, M. E., van Warmerdam, L. J., Beijnen, J. H., & Gelderblom, H. (2013). Bioequivalence of Liposome-Entrapped Paclitaxel Easy-To-Use (LEP-ETU) formulation and paclitaxel in polyethoxylated castor oil: A randomized, two-period crossover study in patients with advanced cancer. Clinical Therapeutics, 35, 1946–1954.
  • Stathopoulos, G. P., Boulikas, T., Vougiouka, M., Deliconstantinos, G., Rigatos, S., Darli, E., Viliotou, V., & Stathopoulos, J. G. (2005). Pharmacokinetics and adverse reactions of a new liposomal cisplatin (Lipoplatin): Phase I study. Oncology Reports, 13, 589–595.
  • Stathopoulos, G. P., Boulikas, T., Kourvetaris, A., & Stathopoulos, J. (2006a). Liposomal oxaliplatin in the treatment of advanced cancer: A phase I study. Anticancer Research, 26, 1489–1493.
  • Stathopoulos, G. P., Boulikas, T., Vougiouka, M., Rigatos, S. K., & Stathopoulos, J. G. (2006b). Liposomal cisplatin combined with gemcitabine in pretreated advanced pancreatic cancer patients: A phase I-II study. Oncology Reports, 15, 1201–1204.
  • Subbiah, V., Grilley-Olson, J. E., Combest, A. J., Sharma, N., Tran, R. H., Bobe, I., Osada, A., Takahashi, K., Balkissoon, J., Camp, A., Masada, A., Reitsma, D. J., & Bazhenova, L. A. (2018). Phase Ib/II trial of NC-6004 (nanoparticle cisplatin) plus gemcitabine in patients with advanced solid tumors. Clinical Cancer Research, 24, 43–51.
  • Sun, D., Zhou, S., & Gao, W. (2020). What went wrong with anticancer nanomedicine design and how to make it right. ACS Nano, 14, 12281–12290.
  • Svenson, S., Wolfgang, M., Hwang, J., Ryan, J., & Eliasof, S. (2011). Preclinical to clinical development of the novel camptothecin nanopharmaceutical CRLX101. Journal of Controlled Release, 153, 49–55.
  • Swami, U., Shah, U., & Goel, S. (2017). Eribulin in non-small cell lung cancer: Challenges and potential strategies. Expert Opinion on Investigational Drugs, 26, 495–508.
  • Tang, L., Yang, X., Yin, Q., Cai, K., Wang, H., Chaudhury, I., Yao, C., Zhou, Q., Kwon, M., Hartman, J. A., Dobrucki, I. T., Dobrucki, L. W., Borst, L. B., Lezmi, S., Helferich, W. G., Ferguson, A. L., Fan, T. M., & Cheng, J. (2014). Investigating the optimal size of anticancer nanomedicine. Proceedings of the National Academy of Sciences, 111, 15344–15349.
  • Tippayamontri, T., Kotb, R., Sanche, L., & Paquette, B. (2014). New therapeutic possibilities of combined treatment of radiotherapy with oxaliplatin and its liposomal formulation, Lipoxal™, in rectal cancer using xenograft in nude mice. Anticancer Research, 34, 5303–5312.
  • Tomkinson, B., Bendele, R., Giles, F. J., Brown, E., Gray, A., Hart, K., LeRay, J. D., Meyer, D., Pelanne, M., & Emerson, D. L. (2003). OSI-211, a novel liposomal topoisomerase I inhibitor, is active in SCID mouse models of human AML and ALL. Leukemia Research, 27, 1039–1050.
  • Torchilin, V. (2011). Tumor delivery of macromolecular drugs based on the EPR effect. Advanced Drug Delivery Reviews, 63, 131–135.
  • Tweedie, D. J., Erikson, J. M., & Prough, R. A. (1987). Metabolism of hydrazine anti-cancer agents. Pharmacology & Therapeutics, 34, 111–127.
  • Ueno, T., Endo, K., Hori, K., Ozaki, N., Tsuji, A., Kondo, S., Wakisaka, N., Murono, S., Kataoka, K., Kato, Y., & Yoshizaki, T. (2014). Assessment of antitumor activity and acute peripheral neuropathy of 1,2-diaminocyclohexane platinum (II)-incorporating micelles (NC-4016). International Journal of Nanomedicine, 9, 3005–3012.
  • Uldrick, T. S., & Whitby, D. (2011). Update on KSHV epidemiology, Kaposi Sarcoma pathogenesis, and treatment of Kaposi Sarcoma. Cancer Letters, 305, 150–162.
  • Valcourt, D. M., Dang, M. N., Scully, M. A., & Day, E. S. (2020). Nanoparticle-mediated co-delivery of Notch-1 antibodies and ABT-737 as a potent treatment strategy for triple-negative breast cancer. ACS Nano, 14, 3378–3388.
  • van der Meel, R., Sulheim, E., Shi, Y., Kiessling, F., Mulder, W. J. M., & Lammers, T. (2019). Smart cancer nanomedicine. Nature Nanotechnology, 14, 1007–1017.
  • Verco, S., Maulhardt, H., Baltezor, M., Williams, E., Iacobucci, M., Wendt, A., Verco, J., Marin, A., Campbell, S., Dorman, P., & diZerega, G. (2021). Local administration of submicron particle paclitaxel to solid carcinomas induces direct cytotoxicity and immune-mediated tumoricidal effects without local or systemic toxicity: Preclinical and clinical studies. Drug Delivery and Translational Research, 11, 1806–1817.
  • Vergote, I., Bergfeldt, K., Franquet, A., Lisyanskaya, A. S., Bjermo, H., Heldring, N., Buyse, M., & Brize, A. (2020). A randomized phase III trial in patients with recurrent platinum sensitive ovarian cancer comparing efficacy and safety of paclitaxel micellar and Cremophor EL-paclitaxel. Gynecologic Oncology, 156, 293–300.
  • Vincristine liposomal-INEX: Lipid-encapsulated vincristine, onco TCS, transmembrane carrier system--vincristine, vincacine, vincristine sulfate liposomes for injection, VSLI. (2004). Drugs in R&D, 5, 119–123.
  • Vokes, E. E., Gordon, G. S., Mauer, A. M., Rudin, C. M., Krauss, S. A., Szeto, L., Golomb, H. M., & Hoffman, P. C. (2000). A phase I study of STEALTH cisplatin (SPI-77) and vinorelbine in patients with advanced non small-cell lung cancer. Clinical Lung Cancer, 2, 128–132.
  • von Moos, R., Thuerlimann, B. J., Aapro, M., Rayson, D., Harrold, K., Sehouli, J., Scotte, F., Lorusso, D., Dummer, R., Lacouture, M. E., Lademann, J., & Hauschild, A. (2008). Pegylated liposomal doxorubicin-associated hand-foot syndrome: Recommendations of an international panel of experts. European Journal of Cancer, 44, 781–790.
  • Wagner, A. M., Knipe, J. M., Orive, G., & Peppas, N. A. (2019). Quantum dots in biomedical applications. Acta Biomaterialia, 94, 44–63.
  • Wang, W., & Tse-Dinh, Y. C. (2019). Recent advances in use of topoisomerase inhibitors in combination cancer therapy. Current Topics in Medicinal Chemistry, 19, 730–740.
  • Wang, L., Cao, J., Li, C., Wang, X., Zhao, Y., Li, T., Du, Y., Tao, Z., Peng, W., Wang, B., Zhang, J., Zhang, S., Wang, Z., & Hu, X. (2021). Efficacy and safety of mitoxantrone hydrochloride liposome injection in Chinese patients with advanced breast cancer: A randomized, open-label, active-controlled, single-center, phase II clinical trial. Investigational New Drugs, 40, 330–339.
  • Wetzler, M., Thomas, D. A., Wang, E. S., Shepard, R., Ford, L. A., Heffner, T. L., Parekh, S., Andreeff, M., O'Brien, S., & Kantarjian, H. M. (2013). Phase I/II trial of nanomolecular liposomal annamycin in adult patients with relapsed/refractory acute lymphoblastic leukemia. Clinical Lymphoma, Myeloma & Leukemia, 13, 430–434.
  • White, S. C., Lorigan, P., Margison, G. P., Margison, J. M., Martin, F., Thatcher, N., Anderson, H., & Ranson, M. (2006). Phase II study of SPI-77 (sterically stabilised liposomal cisplatin) in advanced non-small-cell lung cancer. British Journal of Cancer, 95, 822–828.
  • Whittle, J. R., Lickliter, J. D., Gan, H. K., Scott, A. M., Simes, J., Solomon, B. J., MacDiarmid, J. A., Brahmbhatt, H., & Rosenthal, M. A. (2015). First in human nanotechnology doxorubicin delivery system to target epidermal growth factor receptors in recurrent glioblastoma. Journal of Clinical Neuroscience, 22, 1889–1894.
  • Wicki, A., Witzigmann, D., Balasubramanian, V., & Huwyler, J. (2015). Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. Journal of Controlled Release, 200, 138–157.
  • Wilhelm, S., Tavares, A. J., Dai, Q., Ohta, S., Audet, J., Dvorak, H. F., & Chan, W. C. W. (2016). Analysis of nanoparticle delivery to tumours. Nature Reviews Materials, 1, 16014.
  • Xu, X., Wang, L., Xu, H. Q., Huang, X. E., Qian, Y. D., & Xiang, J. (2013). Clinical comparison between paclitaxel liposome (Lipusu®) and paclitaxel for treatment of patients with metastatic gastric cancer. Asian Pacific Journal of Cancer Prevention, 14, 2591–2594.
  • Xu, C., Nam, J., Hong, H., Xu, Y., & Moon, J. J. (2019). Positron emission tomography-guided photodynamic therapy with biodegradable mesoporous silica nanoparticles for personalized cancer immunotherapy. ACS Nano, 13, 12148–12161.
  • Yacoby, I., & Benhar, I. (2008). Antibacterial nanomedicine. Nanomedicine, 3, 329–341.
  • Yang, J. I., Jin, B., Kim, S. Y., Li, Q., Nam, A., Ryu, M. O., Lee, W. W., Son, M. H., Park, H. J., Song, W. J., & Youn, H. Y. (2020). Antitumour effects of Liporaxel (oral paclitaxel) for canine melanoma in a mouse xenograft model. Veterinary and Comparative Oncology, 18, 152–160.
  • Young, C., Schluep, T., Hwang, J., & Eliasof, S. (2011). CRLX101 (formerly IT-101)-a novel nanopharmaceutical of camptothecin in clinical development. Current Bioactive Compounds, 7, 8–14.
  • Yousefpour, P., Ahn, L., Tewksbury, J., Saha, S., Costa, S. A., Bellucci, J. J., Li, X., & Chilkoti, A. (2019). Conjugate of doxorubicin to albumin-binding peptide outperforms aldoxorubicin. Small, 15, e1804452.
  • Yuan, F., Leunig, M., Huang, S. K., Berk, D. A., Papahadjopoulos, D., & Jain, R. K. (1994). Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Research, 54, 3352–3356.
  • Yun, Y. H., Lee, B. K., & Park, K. (2015). Controlled drug delivery: Historical perspective for the next generation. Journal of Controlled Release, 219, 2–7.
  • Zamboni, W. C., Ramalingam, S., Friedland, D. M., Edwards, R. P., Stoller, R. G., Strychor, S., Maruca, L., Zamboni, B. A., Belani, C. P., & Ramanathan, R. K. (2009). Phase I and pharmacokinetic study of pegylated liposomal CKD-602 in patients with advanced malignancies. Clinical Cancer Research, 15, 1466–1472.
  • Zelmer, C., Zweifel, L. P., Kapinos, L. E., Craciun, I., Güven, Z. P., Palivan, C. G., & Lim, R. Y. H. (2020). Organelle-specific targeting of polymersomes into the cell nucleus. Proceedings of the National Academy of Sciences, 117, 2770–2778.
  • Zhang, H. (2016). Onivyde for the therapy of multiple solid tumors. Oncotargets and Therapy, 9, 3001–3007.
  • Zhang, J. A., Xuan, T., Parmar, M., Ma, L., Ugwu, S., Ali, S., & Ahmad, I. (2004). Development and characterization of a novel liposome-based formulation of SN-38. International Journal of Pharmaceutics, 270, 93–107.
  • Zhang, J., Tian, Q., Yung, C. S., Chuen, L. S., Zhou, S., Duan, W., & Zhu, Y. Z. (2005). Metabolism and transport of oxazaphosphorines and the clinical implications. Drug Metabolism Reviews, 37, 611–703.
  • Zhang, E., Xing, R., Liu, S., & Li, P. (2019). Current advances in development of new docetaxel formulations. Expert Opinion on Drug Delivery, 16, 301–312.
  • Zhang, L., Beatty, A., Lu, L., Abdalrahman, A., Makris, T. M., Wang, G., & Wang, Q. (2020). Microfluidic-assisted polymer-protein assembly to fabricate homogeneous functional nanoparticles. Materials Science & Engineering C, Materials for Biological Applications, 111, 110768.
  • Zhang, J., Pan, Y., Shi, Q., Zhang, G., Jiang, L., Dong, X., Gu, K., Wang, H., Zhang, X., Yang, N., Li, Y., Xiong, J., Yi, T., Peng, M., Song, Y., Fan, Y., Cui, J., Chen, G., Tan, W., Zang, A., Guo, Q., Zhao, G., Wang, Z., He, J., Yao, W., Wu, X., Chen, K., Hu, X., Hu, C., Yue, L., Jiang, D., Wang, G., Liu, J., Yu, G., Li, J., Bai, J., Xie, W., Zhao, W., Wu, L., & Zhou, C. (2022). Paclitaxel liposome for injection (Lipusu) plus cisplatin versus gemcitabine plus cisplatin in the first-line treatment of locally advanced or metastatic lung squamous cell carcinoma: A multicenter, randomized, open-label, parallel controlled clinical study. Cancer Communications, 42, 3–16.
  • Zhao, L., & Zhang, B. (2017). Doxorubicin induces cardiotoxicity through upregulation of death receptors mediated apoptosis in cardiomyocytes. Scientific Reports, 7, 44735.
  • Zhu, L., & Chen, L. (2019). Progress in research on paclitaxel and tumor immunotherapy. Cellular & Molecular Biology Letters, 24, 40.