Development of Cenogram Technique Over the Past Six Decades with Some Insights into the Varied Habitats Occupied by Diverse Mammalian Communities Across Spain, China, and India Transiting the Middle Miocene Climatic Optimum

  1. Kapur, Vivesh V. 1
  2. García Yelo, Blanca A. 3
  3. Thakkar, M. G. 2
  1. 1 Birbal Sahni Institute of Palaeosciences
  2. 2 Krantiguru Shyamji Krishna Verma Kachchh University
    info

    Krantiguru Shyamji Krishna Verma Kachchh University

    Bhuj, India

    ROR https://ror.org/0531xjy14

  3. 3 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

Book:
Climate Change and Environmental Impacts: Past, Present and Future Perspective

Publisher: Springer

ISSN: 2194-9204 2194-9212

ISBN: 9783031131189 9783031131196

Year of publication: 2022

Pages: 33-46

Type: Book chapter

DOI: 10.1007/978-3-031-13119-6_3 GOOGLE SCHOLAR lock_openOpen access editor

Sustainable development goals

Abstract

The climatic evolution of the Neogene, with long-term cooling disrupted by the Middle Miocene Climatic Optimum (MMCO; ~17–14.75 Ma), arises as a suitable baseline to analyze the effects of these transcendent climatic changes on the mammalian community structures. The present investigation is an attempt to examine the palaeohabitat of a Neogene (Middle Miocene: ~15–11.5 Ma) geographically distant (i.e., from Spain, China, and India) extinct mammalian communities utilizing the cenogram approach (in both qualitative and quantitative framework). The detailed statistical analyses (presented herein) incorporating a total of eight mammalian communities allows us to infer predominance of Tropical Deciduous Forest environments between ~15 and ~11.5 Ma interval, with several pulses of distinctive aridity experienced by some communities thriving within the Iberian region. On the contrary, stable forested conditions were witnessed by the middle Miocene communities of Asia [i.e., the ~11.5 million-year-old mammalian community of Laogou (China), and the ~13.5 million-year-old mammalian community of Ramnagar (north India)]. Our present investigation also infers that additional mammalian remains (particularly of body mass of <35 kg) are warranted to decipher the habitat (based on cenogram approach) of the Middle Miocene (~13 Ma) mammalian community of Kalagarh (Himalayan Foreland Basin, north India) and the Middle Miocene (~14 Ma) mammalian community of Palasava (Kutch Basin, western India). Nonetheless, the Cenogram technique (being continuously developed over the past six decades) may become an important tool to decipher any habitat change(s) of western India’s mammalian communities considering renewed palaeontological efforts within the Neogene of the region.

Bibliographic References

  • Aiglsstorfer M, Bocherens H, Bӧhme M (2014) Large mammal ecology in the late middle Miocene Gratkorn locality (Austria). Palaeodivers Palaeoenviron 94:189–213. https://doi.org/10.1007/s12549-013-0145-5
  • Alroy J (2000) New methods for quantifying macroevolutionary patterns and processes. Paleobiology 26:707–733
  • Anderson JF, Hall-Martin A, Russell DA (1985) Long-bone circumference and weight in mammals, birds and dinosaurs. J Zool 207:53–61
  • Andersson K (2004) Predicting carnivoran body mass from a weight-bearing joint. J Zool 262:161–172
  • Barry JC, Morgan ME, Flynn LJ, Pilbeam D, Behrensmeyer AK, Raza SM, Khan IA, Badgley C, Hicks J, Kelley J (2002) Faunal and environmental change in the Late Miocene Siwaliks of northern Pakistan. Paleobiology 28(S2):1–71
  • Becker D, Tissier J (2019) Rhinocerotidae from the early middle Miocene locality Gračanica (Bugojno Basin, Bosnia-Herzegovina). Palaeobiodivers Palaeoenviron. https://doi.org/10.1007/s12549-018-0352-1
  • Bernor RL, Fessaha N (2000) Evolution of late Miocene Hungarian Suinae (Artiodactyla, Suidae). Carolina 58:83–92
  • Bhandari A, Kay RF, Williams BA, Tiwari BN, Bajpai S, Hieronymus T (2018) First record of the Miocene hominoid Sivapithecus from Kutch, Gujarat State, western India. PLoS One 13:e0206314. https://doi.org/10.1371/journal.pone.0206314
  • Bown TM, Holroyd PA, Rose KD (1994) Mammal extinctions, body size, and paleotemperature. Proc Natl Acad Sci USA 91:10403–10406
  • Christiansen P (2004) Body size in proboscideans, with notes on elephant metabolism. Zool J Linnean Soc 140:523–549
  • Costeur L (2005) Cenogram analysis of the Rudabánya mammalian community: palaeoenvironmental interpretations. Palaeontogr Ital 90:303–307
  • Creighton GK (1980) Static allometry of mammalian teeth and the correlation of tooth size and body size in contemporary mammals. J Zool (Lond) 191:435–443
  • Croft DA (2001) Cenozoic environmental change in South America as indicated by mammalian body size distributions (cenograms). Divers Distrib 7:271–287. https://doi.org/10.1046/j.1366-9516.2001.00117.x
  • Dagosto M, Terranova CJ (1992) Estimating the body size of Eocene primates: a comparison of results from dental and postcranial variables. Int J Primatol 13(3):307–343
  • Damuth J, MacFadden BJ (1990) Introduction: body size and its estimation. In: Damuth J, MacFadden BJ (eds) Body size in mammalian paleobiology: estimation and biological implications. Cambridge University Press, Cambridge, UK, pp 1–10
  • DeSilva JM, Morgan ME, Barry JC, Pilbeam D (2010) A hominoid distal tibia from the Miocene of Pakistan. J Hum Evol 58:147–154
  • Domingo L, Koch PL, Hernández Fernández M, Fox DL, Domingo MS, Alberdi MT (2013) Late Neogene and early quaternary paleoenvironmental and paleoclimatic conditions in southwestern Europe: isotopic analyses on mammalian taxa. PLoS One 8(5):e63739. https://doi.org/10.1371/journal.pone.0063739
  • Egi N, Takai M, Shigehara N, Tsubamoto T (2004) Body mass estimates for Eocene eosimiid and amphipithecid primates using prosimians and anthropoid scaling models. Int J Primatol 25:211–236
  • Ferreira GS, Bandyopadhyay S, Joyce WG (2018) A taxonomic reassessment of Piramys auffenbergi, a neglected turtle from the late Miocene of Piram Island, Gujarat, India. PeerJ. https://doi.org/10.7717/peerj.5938
  • Fleagle JG (1978) Size distributions of living and fossil primate faunas. Paleobiology 4:67–76
  • Flower BP, Kennett JP (1994) The middle Miocene climatic transition: east Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeogr Palaeoclimatol Palaeoecol 108:537–555
  • Flynn LJ, Barry JC, Morgan ME, Pilbeam D, Jacobs LL, Lindsay EH (1995) Neogene Siwalik mammalian lineages: species longevities, rates of change, and modes of speciation. In: Badgley C, Behrensmeyer AK (eds) Long records of continental ecosystems. Palaeogeography, palaeoclimatology, palaeoecology, vol 115. Cambridge University Press, Cambridge, pp 249–264
  • García Yelo BA, Gómez Cano AR, Cantalapiedra JL, Alcalde GM, Sanisidro O, Oliver A, Hernández-Ballarín V, López-Guerrero P, Fraile S, Hernández-Fernández M (2014) Palaeoenvironmental analysis of the Aragonian (middle Miocene) mammalian faunas from the Madrid Basin based on body-size structure. J Iber Geol 40(1):129–140
  • Gilbert CC, Patel BA, Singh NP, Campisano CJ, Fleagle JG, Rust KL, Patnaik R (2017) New sivaladapid primate from lower Siwalik deposits surrounding Ramnagar (Jammu and Kashmir State), India. J Hum Evol 102:21–41. https://doi.org/10.1016/j.jhevol.2016.10.001
  • Gilbert CC, Ortiz A, Pugh KD, Campisano CJ, Patel BA, Singh NP, Fleagle JG, Patnaik R (2020) New middle Miocene ape (primates: hylobatidae) from Ramnagar, India fills major gaps in the hominoid fossil record. Proc R Soc B 287. https://doi.org/10.1098/rspb.2020.1655
  • Gingerich PD (1989) New earliest Wasatchian mammalian fauna from the Eocene of northwestern Wyoming: composition and diversity in a rarely sampled high-floodplain assemblage, vol 28. University of Michigan, Ann Arbor, pp 1–97
  • Gingerich PD (1990) Prediction of body mass in mammalian species from long bone lengths and diameters. Contrib Mus Paleontol Univ Mich 28(4):79–92
  • Gingerich PD, Smith BH, Rosenberg K (1982) Allometric scaling in the dentition of primates and prediction of body weight from tooth size in fossils. Am J Phys Anthropol 58:81–100
  • Gӧhlich UB (2010) The Proboscidea (Mammalia) from the Miocene of Sandelzhaunsen (southern Germany). Paläontol Z 84:163–204. https://doi.org/10.1007/s12542-010-0053-1
  • Gómez Cano AR, García Yelo BA, Hernández Fernández M (2006) Cenogramas, análisis bioclimático y muestreo en faunas de mamíferos: implicacion espara la aplicación de métodos de análisis paleoecológico. Estud Geol 62:135–144
  • Grabowski M, Jungers WL (2017) Evidence of a chimpanzee-sized ancestor of humans but a gibbon-sized ancestor of apes. Nat Commun. https://doi.org/10.1038/s41467-017-00997-4
  • Guzmán JA (2018) Palaeobiology of tragulids (Mammalia: Artiodactyla: Ruminantia). Dissertation zur Erlangung des Doktorgrades an der Fakultät für Geowissenschaften der Ludwig-Maximilians-Universität München, pp 1–230
  • Harris EB, Kohn MJ, Strömberg CAE (2020) Stable isotope compositions of herbivore teeth indicate climatic stability leading into the mid-Miocene climatic optimum, in Idaho, U.S.A. Palaeogeogr Palaeoclimatol Palaeoecol 546:109610. https://doi.org/10.1016/j.palaeo.2020.109610
  • Hernández Fernández M, Alberdi MT, Azanza B, Montoya P, Morales J, Nieto M, Peláez-Campomanes P (2006) Identification problems of arid environments in the neogene–quaternary mammal record of Spain. J Arid Environ 66:585–608
  • Holbourn A, Kuhnt W, Kochhann KGD, Andersen N, Sebastian Meier KJ (2015) Global perturbation of the carbon cycle at the onset of the Miocene climatic optimum. Geology 43:123–126. https://doi.org/10.1130/G36317.1
  • Kapur VV, Pickford M, Chauhan G, Thakkar MG (2019) A middle Miocene (~14 Ma) vertebrate assemblage from Palasava, Rapar Taluka, Kutch (Kachchh) district, Gujarat State, western India. Hist Biol. https://doi.org/10.1080/08912963.2019.1648451
  • Kapur VV, GarcíaYelo BA, Morthekai P (2020) Cenogram analyses as habitat indicators for the paleogene-neogene mammalian communities across the globe, with an emphasis on the early Eocene Cambay Shale mammalian community from India. J Iber Geol 46(3):291–310. https://doi.org/10.1007/s41513-020-00131-2
  • Kay RF (1975) The functional adaptations of primate molar teeth. Am J Phys Anthropol 43:195–216
  • Larramendi A (2016) Shoulder height, body mass, and shape of proboscideans. Acta Palaeontol Pol 61(3):537–574
  • Legendre S (1986) Analysis of mammalian communities from the late Eocene and Oligocene of southern France. Palaeovertebrata 16:191–212
  • Legendre S (1987) Les communautés de mammifères d'Europe occidentale de ‘Eocene supérieur et Oligocène: structures et milieux. Münchner Geowissenschaft liche Abhandlungen A10:301–312
  • Legendre S (1989) Les communautés de mammifères du Paléogène (Eocène supérieur et Oligocène) d’Europe occidentatructures, milieu et évolution. Münchner Geowissenschaft liche Abhandlungen A16:1–110
  • Legendre S, Roth C (1988) Correlation of carnassial tooth size and body weight in recent carnivores (mammalia). Hist Biol 1:85–98
  • Liu L-P (2003) The Chinese fossil Suoidea: systematics, evolution, and paleoecology. Yliopistopaino, Helsinki, pp 1–41
  • Martinez JN, Sudre J (1995) The astragalus of paleogene artiodactyls: comparative morphology, variability and prediction of body mass. Lethaia 28:197–209
  • Mendoza M, Janis CM, Palmqvist P (2006) Estimating the body mass of extinct ungulates: a study on the use of multiple regression. J Zool 270:90–101
  • Methner K, Campani M, Fiebig J, Löffler N, Kempf O, Mulch A (2020) Middle Miocene long-term continental temperature change in and out of pace with marine climate records. Sci Rep 10:7989. https://doi.org/10.1038/s41598-020-64743-5
  • Millien V, Bovy H (2010) When teeth and bones disagree: body mass estimation of a giant extinct rodent. J Mammal 91(1):11–18
  • Myers TJ (2001) Prediction of marsupial body mass. Aust J Zool 49:99–118
  • Nieto M, Rodríguez J (2003) Inferencia paleoecológica en mamíferos cenozoicos: limitaciones metodológicas. Coloquios de Paleontología 1:459–474
  • Parmar V, Prasad GVR, Norboo R (2018) Middle Miocene small mammals from the Siwalik Group of Northwestern India. J Asian Earth Sci 162:84–92. https://doi.org/10.1016/j.jseaes.2017.11.023
  • Patnaik R, Sharma KM, Mohan L, Williams BA, Kay RF, Chatrath P (2014) Additional vertebrate remains from the early Miocene of Kutch, Gujarat. Spec Publ Paleontol Soc India 5:335–351
  • Prasad KN (1974) The vertebrate fauna from Piram Island, Gujarat, India. Mem Geol Surv India 1974:1–22
  • Retallack GJ, Bajpai S, Liu X, Kapur VV, Pandey SK (2018) Advent of strong south Asian monsoon by 20 million years ago. J Geol 126:1–24
  • Rodríguez J (1999) Use of cenograms in mammalian palaeocology - a critical review. Lethaia 32:331–347
  • Sahni A, Mishra VP (1975) Lower tertiary vertebrates from western India. Monogr Palaeontol Soc India 3:1–48
  • Sehgal RK (2013) Revised mammalian biostratigraphy of the lower Siwalik sediments of Ramnagar (J. & K.), India and its faunal correlation. J Palaeontol Soc India 58(1):87–92
  • Sehgal RK, Patnaik R (2012) New muroid rodent and Sivapithecus dental remains from the lower Siwalik deposits of Ramnagar (J & K, India): age implication. Quat Int 269:69–73
  • Singh NP, Jukar AD, Patnaik R, Sharma MK, Singh NA, Singh YP (2020) The first specimen of Deinotherium indicum (Mammalia, Proboscidea, Deinotheriidae) from the late Miocene of Kutch, India. J Paleontol. https://doi.org/10.1017/jpa.2020.3
  • Travouillon KJ, Legendre S (2009) Using cenograms to investigate gaps in mammalian body mass distributions in Australian mammals. Palaeogeogr Palaeoclimatol Palaeoecol 272:69–84
  • Travouillon KJ, Legendre S, Archer M, Hand SA (2009) Palaeoecological analyses of Riversleigh’s oligo-Miocene sites: implications for oligo-Miocene climate change in Australia. Palaeogeogr Palaeoclimatol Palaeoecol 276:24–37
  • Tsubamoto T, Egi N, Takai M, Sein C, Maung M (2005) Middle Eocene ungulate mammals from Myanmar: a review with description of new specimens. Acta Palaeontol Pol 50(1):117–138
  • Valverde JA (1964) Remarquessur la structure et l'évolution des communautés de vertebras terrestres. 1. Structure d'une communauté 2, Rapport entre prédateurs et proies. La Terre et la Vie 111:121–154
  • Valverde JA (1967) Estructura de unacommunidad de vertebra dos terrestres. Monografías de la Estación Biológica de Doñana 1:1–129
  • You Y, Huber M, Müller RD, Poulsen CJ, Ribbe J (2009) Simulation of the middle Miocene climate optimum. Geophys Res Lett 36. https://doi.org/10.1029/2008GL036571
  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693. https://doi.org/10.1126/science.1059412
  • Zachos JC, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279–283. https://doi.org/10.1038/nature06588