Methodological Aspects in the Theory of Mathematical Working Spaces

  1. Assia Nechache
  2. Gómez-Chacón, Inés M. 1
  1. 1 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

Libro:
Mathematics Education in the Digital Era
  1. Alain Kuzniak (ed. lit.)
  2. Elisabeth Montoya-Delgadillo (ed. lit.)
  3. Philippe R. Richard (ed. lit.)

Editorial: Springer

ISSN: 2211-8136 2211-8144

ISBN: 9783030908492 9783030908508

Año de publicación: 2022

Páginas: 33-56

Tipo: Capítulo de Libro

DOI: 10.1007/978-3-030-90850-8_2 GOOGLE SCHOLAR lock_openAcceso abierto editor

Referencias bibliográficas

  • Blum, W., & Leiss, D. (2007). How do students and teachers deal with mathematical modelling problems? The example sugaloaf und the DISUM project. In C. Haines, P. L. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling (ICTMA12)-education, engineering and economics. Chichester: Horwood.
  • Bikner-Ahsbahs, A. (2015). Empirically grounded building of ideal types. A methodical principle of constructing theory in the interpretative research in mathematics education. In A. Bikner-Ahsbahs, C. Knipping, & N. Presmeg (Eds.), Approaches to qualitative research in mathematics education (pp. 105–135). Dordrecht: Springer. https://doi.org/10.1007/978-94-017-9181-6.
  • Darses, F. (2001). Providing ergonomists with techniques for cognitive work analysis. Theoretical Issues in Ergonomics Science, 2, 268–277.
  • Derouet, C. (2017). Circulations entre trois domaines mathématiques: les probabilités, la statistique et l’analyse. In K. Nikolantonakis (Ed.), Proceedings of 5th Conference Espace de Travail Mathématique (pp. 63–78). Macedonia: University of Macedonia.
  • Drouhard, J.-P. (2009). Epistemography and algebra. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of CERME6. Lyon, France. http://ife.ens-lyon.fr/publications/edition-electronique/cerme6/wg4-07-drouhard.pdf.
  • Fénichel, M., & Taveau, C. (2009). Enseigner les mathématiques au cycle 3. Le cercle sans tourner en rond. DVD, CRDP Créteil.
  • Gómez-Chacón, I. M., & Kuzniak, A. (2015). Geometric work spaces: Figural, instrumental and discursive geneses of reasoning in a technological environment. International Journal of Science and Mathematics Education, 13(1), 201–226. https://doi.org/10.1007/s10763-013-9462-4
  • Gómez-Chacón, I. M., Botana, F., Escribano, J., & Abánades, M. A. (2016a). Concepto de Lugar Geométrico. Génesis de Utilización Personal y Profesional con Distintas Herramientas. Bolema–Mathematics Education Bulletin, 30(54), 67–94.
  • Gómez-Chacón, I. M., Romero, I. M., & Garcia, M. M. (2016b). Zig-zagging in geometrical reasoning in technological collaborative environments: A mathematical working space-framed study concerning cognition and affect. ZDM Mathematics Education, 48(6), 909–924. https://doi.org/10.1007/s11858-016-0755-2
  • Gómez-Chacón, I. M. (2018). Hidden connections and double meanings: A mathematical viewpoint of affective and cognitive interactions in learning. In G. Kaiser, H. Forgasz, M. Graven, A. Kuzniak, E. Simmt, & B. Xu (Eds.), Invited Lectures from the 13th International Congress on Mathematical Education. ICME-13 Monographs (pp. 155–174). Cham: Springer. https://doi.org/10.1007/978-3-319-72170-5_10
  • Kuzniak, A., & Nechache, A. (2015). Using the geometric working spaces in order to plan the teaching of geometry. In K. Krainer (Ed.), Proceedings 9th Conference European Research in Mathematics Education. Prague, Czech Republic. https://hal.archives-ouvertes.fr/hal-01287007/document.
  • Kuzniak, A., Nechache, A., & Drouhard, J. P. (2016). Understanding the development of mathematical work in the context of the classroom. ZDM Mathematics Education, 48(6), 861–874.
  • Kuzniak, A., & Nechache, A. (2019a). Tâches emblématiques dans l’étude des ETM idoines et personnels: Existence et Usages. In K. Nikolantonakis (Ed.), Proceedings of 5th Conference Espace de Travail Mathématique (pp. 145–155). Macedonia: University of Macedonia.
  • Kuzniak, A., & Nechache, A. (2019b). Personal geometrical work of pre-service teachers: a case study based on the theory of mathematical working spaces. In Procedings of Cerme11. Utrecht, Nederlands. https://hal.archives-ouvertes.fr/hal-02402239/document.
  • Kuzniak, A., & Nechache, A. (2019c). Une méthodologie pour analyser le travail personnel d’étudiants dans la théorie des Espaces de Travail Mathématique. In L. Vivier & E. Montoya-Delgadillo (Eds.), Sexto Simposio sobre el Trabajo Matemático (pp. 61–70). Valparaíso: Pontificia Universidad Católica de Valparaíso.
  • Kuzniak, A., & Nechache, A. (2021). On forms of geometric work: A study with pre-service teachers based on the theory of mathematical working spaces. Educational Studies in Mathematics, 106(2), 271–289. https://doi.org/10.1007/s10649-020-10011-2.
  • Montoya, E., & Vivier, L. (2014). Les changements de domaine dans le cadre des Espaces de Travail Mathématique. Annales De Didactique Et De Sciences Cognitives, 19, 73–101.
  • Nechache, A. (2017). La catégorisation des tâches et du travailleur-sujet: Un outil méthodologique pour l’étude du travail mathématique dans le domaine des probabilités. Annales De Didactique Et De Sciences Cognitives, 19, 67–90.
  • Pizarro, A. (2018). El trabajo geométrico en clases de séptimo básico en Chile: Un estudio de casos sobre la enseñanza de los triángulos. Thèse de l’Université de Paris. Paris: Université de Paris.
  • Radford, L. (2008). Connecting theories in mathematics education: challenges and possibilities. ZDM Mathematics Education, 40, 317–327. https://doi.org/10.1007/s11858-008-0090-3.
  • Reyes, C. (2020). Enseignement et apprentissage des fonctions numériques dans un contexte de modélisation et travail mathématiques. Thèse de l’Université de Paris. Paris: Université de Paris. https://tel.archives-ouvertes.fr/tel-03211997.