Mathematics Teachers’ Knowledge and Professional Development: A Cross-Case Comparison Study

  1. Gómez-Chacón, Inés M. 1
  1. 1 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

Libro:
Mathematics Education in the Digital Era
  1. Alain Kuzniak (ed. lit.)
  2. Elisabeth Montoya-Delgadillo (ed. lit.)
  3. Philippe R. Richard (ed. lit.)

Editorial: Springer

ISSN: 2211-8136 2211-8144

ISBN: 9783030908492 9783030908508

Año de publicación: 2022

Páginas: 229-246

Tipo: Capítulo de Libro

DOI: 10.1007/978-3-030-90850-8_10 GOOGLE SCHOLAR lock_openAcceso abierto editor

Referencias bibliográficas

  • Artigue, M. (1990). Épistémologie et didactique. Recherches En Didactique Des Mathématiques, 10(23), 241–286.
  • Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7(3), 245–274.
  • Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389–407.
  • Barbero, M., Gómez-Chacón, I. M., & Arzarello, F. (2020). Backward reasoning and epistemic actions in discovering processes of strategic games problems. Mathematics, 8(6), 989. https://doi.org/10.3390/math8060989
  • Bikner-Ahsbahs, A., & Prediger, S. (2010). Networking of theories: An approach for exploiting the diversity of theoretical approaches. In B. Sriraman & L. English (Eds.), Theories of Mathematics Education: Seeking new frontiers (pp. 483–506). Berlin: Springer.
  • Borman, K. M., Clarke, C., Cotner, B., & Lee, R. (2006). Cross-Case Analysis. In J. L. Green, G. Camilli, P. B. Elmore, A. Skukauskaiti, & E. Grace (Eds.), Handbook of complementary methods in education research (pp. 123–140). American Educational Research Association. Mahwah, N.J. & Lawrence Erlbaum Associates.
  • Brousseau, G. (1997). Theory of didactical situations in mathematics: Didactique des Mathematiques, 1970–1990. Dordrecht: Kluwer.
  • Carrillo, J., Climent, N., Montes, M., Contreras, L. C., Flores-Medrano, E., Escudero-Ávila, D., Vasco, D., Rojas, N., Flores, P., Aguilar-González, A., Ribeiro, M., & Muñoz-Catalán, M. C. (2018). The mathematics teacher’s specialised knowledge (MTSK) model. Research in Mathematics Education, 20(3), 236–253.
  • Derouet, C. (2016). Circulations entre trois domaines mathématiques : Les probabilités, la statistique et l’analyse. In I. M. Gómez-Chacón, A. Kuzniak, K. Nikolantonakis, & R. Philippe (Eds.), Actes Cinquième Symposium Espace de Travail Mathématique (ETM5) (pp. 63–78). University of Western Macedonia.
  • Derouet, C. (2017). La fonction de densité au carrefour entre probabilités et analyse en terminale S. Etude de la conception et de la mise en oeuvre de tâches d’introduction articulant lois à densité et calcul intégral. Thèse. Paris : Université de Paris.
  • Duval, R. (1995). Sémiosis et pensée humaine. Berna: Peter Lang.
  • Eco, U. (1999). Kant et l’Ornithorynque. Paris: Grasset.
  • Ernest, P. (1999). Forms of knowledge in mathematics and mathematics education: Philosophical and rhetorical perspectives. Educational Studies in Mathematics, 38, 67–83.
  • Espinoza-Vásquez, G., Ribeiro, M, & Zakaryan, D. (2018). Avance en la comprensión de las relaciones entre el ETM idóneo y el MTSK del profesor, Menon, Journal of Educational Research, 4th Thematic Issue, Mathematical Working Space and mathematical work, pp. 146–161.
  • Fennema, E., & Franke, M. (1992). Teachers’ knowledge and its impact. In D. A. Grows (Ed.), Handbook of research on mathematics teaching and learning: A project of the NCTM (pp. 147–164). MacMillan Publishing.
  • Gómez Chacón, I. M., & De La Fuente, C. (2019). Exploring teacher’s epistemic beliefs and emotions in inquiry-based teaching of mathematics, In S. Chamberlin, & B. Sriraman (Eds.), Affect and mathematical modeling. Advances in mathematics education (pp. 131–157). Switzerland: Springer. http://dx.doi.org/10.1007/978-3-030-04432-9_9
  • Gómez-Chacón, I. M., & Escribano, J. (2014). Geometric Locus activities in a dynamic geometry system. Non-Iconic Visualization and Instrumental Génesis, RELIME, Revista Latinoamericana De Investigación En Matemática Educativa, 17(41), 191–210. http://dx.doi.org/10.12802/relime.13.17418
  • Gómez-Chacón, I. M., & Kuzniak, A. (2015). Geometric Work Spaces: Figural, instrumental and discursive geneses of reasoning in a technological environment. International Journal of Science and Mathematics Education, 13, 201–226. https://doi.org/10.1007/s10763-013-9462-4
  • Gómez-Chacón, I. M, Botana, F., Escribano, & J, Abánades, M. A (2016). Concepto de Lugar Geométrico. Génesis de Utilización Personal y Profesional con Distintas Herramientas, Bolema - Mathematics Education Bulletin, 30(54), 67–94. http://dx.doi.org/10.1590/1980-4415v30n54a04
  • Gómez-Chacón, I. M., Kuzniak, A., & Vivier, L. (2016). The Teacher’s role from the perspective of Mathematical Working Spaces (El rol del profesor desde la perspectiva de los Espacios de Trabajo Matemático). Bolema - Mathematics Education Bulletin, 30(54), 1–22. http://dx.doi.org/10.1590/1980-4415v30n54a01
  • Gómez-Chacón, I. M., Romero, I. M., & Garcia, M. M. (2016). Zig-zagging in geometrical reasoning in technological collaborative environments: A mathematical working space-framed study concerning cognition and affect. ZDM Mathematics Education, 48(6), 909–924. http://dx.doi.org/10.1007/s11858-016-0755-2
  • Henríquez, C., & Montoya, E. (2015). Espacios de trabajo geométrico sintético y analítico de profesores y su práctica en el aula. Enseñanza De Las Ciencias, 33(2), 51–70.
  • Khan, S. & VanWynsberghe, R. (2008). Cultivating the under-mined: Cross-case analysis as knowledge mobilization, Forum: Qualitative Social Research, FQS 9(1), Art. 34, FQS http://www.qualitative-research.net/fqs/
  • Kidron, I., & Monaghan, J. (2009). Commentary on the chapters on the construction of knowledge. In B. B. Schwarz, T. Dreyfus, & R. Hershkowitz (Eds.), Transformation of knowledge through classroom interaction (pp. 81–90). London: Routledge.
  • Kuzniak, A., Nechache, A., & Drouhard, J.-P. (2016). Understanding the development of mathematical work in the context of the classroom. ZDM Mathematics Education, 48(6), 861–874.
  • Lin, F.-L., & Rowland, T. (2016). Pre-service and in-service mathematics teachers’ knowledge and professional development. In A. Gutierrez, G. C. Leder, & P. Boero (Eds.), The second handbook of research on the psychology of mathematics education (pp. 483–520). Rotterdam: Sense Publishers.
  • Montes, M., Carrillo, J, & Contreras, L. C. (2018). Buscando relaciones entre el conocimiento especializado del profesor y los espacios de trabajo matemático en formación inicial, Menon, Journal of Educational Research, 4 th Thematic Issue, Mathematical Working Space and mathematical work, 129–145.
  • Rabardel, P. (1995). Les hommes et les technologies. Une approche cognitive des instruments contemporains. Paris: Université Paris.
  • Robert, A., & Rogalski, J. (2005). A cross-analysis of the mathematics teacher’s activity. An example in a French 10th-grade class. Educational Studies in Mathematics, 59, 269–298.
  • Rogalski, J. (2008). Le cadre general de la theorie de l’activite. Une perspective de psychologie ergonomique. In F. Vandebrouck (Ed.), La classe de mathématiques: activités des élèves et pratiques des enseignants (pp. 23–30). Toulouse: Octares Editions.
  • Rowland, T., Huckstep, P., & Thwaites, A. (2005). Elementary teachers’ mathematics subject knowledge: The knowledge quartet and the case of Naomi. Journal of Mathematics Teacher Education, 8(3), 255–281.
  • Schneider, M. (2013). Epistemological obstacles in mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 214–217). Dordrecht: Springer-Verlag.
  • Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14. https://doi.org/10.3102/0013189X015002004