Chapter 6: Exploring Teacher’s Epistemic Beliefs and Emotions in Inquiry-Based Teaching of Mathematics

  1. Gómez-Chacón, Inés M. 1
  2. Constantino de la Fuente
  3. Scott A. Chamberlin ed. lit.
  4. Bharath Sriraman ed. lit.
  1. 1 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

Libro:
Affect in Mathematical Modeling

Editorial: Springer

ISSN: 1869-4918 1869-4926

ISBN: 9783030044312 9783030044329

Año de publicación: 2019

Páginas: 131-157

Tipo: Capítulo de Libro

DOI: 10.1007/978-3-030-04432-9_9 GOOGLE SCHOLAR lock_openAcceso abierto editor

Referencias bibliográficas

  • Artigue, M., & Blomhoj, M. (2013). Conceptualizing inquiry-based in mathematics educations. ZDM-The International Journal on Mathematics Education, 45, 797–810.
  • Barzilai, S., & Zohar, A. (2014). Reconsidering personal epistemology as metacognition: A multifaceted approach to the analysis of epistemic thinking. Educational Psychologist, 49(1), 13–35.
  • Bassey, M. (1999). Case study research in educational settings. Buckingham: Open University Press.
  • Bendixen, L. D., & Rule, D. C. (2004). An integrative approach to personal epistemology: A guiding model. Educational Psychologist, 39, 69–80.
  • Blum, W., & Leiß, D. (2005). “Filling up” – the problem of independence-preserving teacher interventions in lessons with demanding modelling tasks. In M. Bosch (Ed.), Proceedings of the fourth congress of the European Society for Research in Mathematics Education (pp. 1623–1633). Spain.
  • Bromme, R. (2005). Thinking and knowing about knowledge. In M. H. G. Hoffmann, J. Lenhard, & F. Seeger (Eds.), Activity and sign –grounding mathematics education (pp. 191–201). New York: Springer.
  • Crouch, R. M., & Haines, C. R. (2004). Mathematical modelling: Transitions between the real world and the mathematical model. International Journal of Mathematics Education in Science and Technology, 35, 2.
  • De la Fuente, C. (2016). Invariantes operacionales matemáticos en los proyectos de investigación matemática con estudiantes de secundaria. Doctoral Dissertation, Madrid: Complutense University of Madrid.
  • Elby, A., & Hammer, D. (2010). Epistemological resources and framing: A cognitive framework for helping teachers interpret and respond to their students’ epistemologies. In L. D. Bendixen & F. C. Feucht (Eds.), Personal epistemology in the classroom: Theory, research, and implications for practice (pp. 409–434). New York: Cambridge University Press.
  • Ericsson, K. A., Krampe, R. T., & Tesch-Romer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100(3), 363–406.
  • Ernest, P. (1990). The relationship between objective and subjective knowledge of mathematics. In F. Seeger & H. Steinbring (Eds.), The dialogue between theory and practice in mathematics education (pp. 123–138). Bielefeld: IDM.
  • Ernest, P. (1991). The philosophy of the mathematics education. UK: Taylor & Francis Group.
  • Gentner, D. (1983). Structure mapping: A theoretical framework for analogy. Cognitive Science, 7, 155–170.
  • Gentner, D. (1989). The mechanism of analogical learning. In S. Vosniadov & A. Ortony (Eds.), Similarity and analogical reasoning (pp. 197–241). Cambridge, UK: Cambridge University Press.
  • Glaser, R., & Chi, M. T. H. (1988). Overview. In M. T. H. Chi, R. Glaser, & M. J. Farr (Eds.), The nature of expertise (pp. xv–xxviii). Hillsdale: Erlbaum Associates.
  • Gliner, J. A., Morgan, G. A., & Leech, N. L. (2009). Sampling and introduction to external validity. In J. A. Gliner, G. A. Morgan, & N. L. Leech (Eds.), Research methods in applied setting: An integrated approach to design and analysis (pp. 115–133). New York: Routledge Taylor & Francis Group.
  • Gómez-Chacón, I. M. (2017). Emotions and heuristics: The state of perplexity in mathematics. Journal ZDM-Mathematics Education, 49, 323–338.
  • Gómez-Chacón, I. M. (2018). Chapter 10: Hidden connections, double meanings A mathematical viewpoint of affective and cognitive interactions in learning. In G. Kaiser, et al. (Eds.) Invited lectures from the 13th International Congress on Mathematical Education. ICME-13 Monographs. doi:https://doi.org/10.1007/978-3-319-72170-5_10.
  • Gómez-Chacón, I. M., & De la Fuente, C. (2018). Problem-solving and mathematical investigation: Creative processes, actions and mediations. In N. Amado, S. Carreira, & K. Jones (Eds.), Broadening the scope of research on mathematical problem solving: A focus on technology, creativity and affect. New York: Springer.
  • Haines, C., & Crouch, R. (2005). Getting to grips with real world contexts: developing research in mathematical modelling. In M. Bosch (Ed.), Proceedings of the fourth congress of the European Society for Research in Mathematics Education (pp. 1655–1666). Spain.
  • Hersh, R. (1986). Some proposals for reviving the philosophy of mathematics. In T. Tymoczko (Ed.), New directions in the philosophy of mathematics (pp. 9–28). Boston: Birkhauser.
  • Hofer, B. K. (2002). Personal epistemology as a psychological and educational construct: An introduction. In B. Hofer & P. Pintrich (Eds.), Personal epistemology. The psychology of beliefs about knowledge and knowing (pp. 3–14). Mahwah: Lawrence Erlbaum Associates.
  • Hofer, B. K., & Bendixen, L. D. (2012). Personal epistemology: Theory, research, and future directions. In K. R. Harris, S. Graham, T. Urdan, C. B. McCormick, G. M. Sinatra, & J. Sweller (Eds.), APA educational psychology handbook, Vol. 1: Theories, constructs, and critical issues (pp. 227–256). Washington, DC: American Psychological Association.
  • Hofer, B. K., & Pintrich, P. R. (1997). The development of epistemological theories: Beliefs about knowledge and knowing and their relation to learning. Review of Educational Research, 67(1), 88–140.
  • Jaworski, B. (2004). Insiders and outsiders in mathematics teaching development: the design and study of classroom activity. Research in Mathematics Education, 6, 3–22.
  • Jaworski, B. (2006). Theory and practice in mathematics teaching development: Critical inquiry as a mode of learning in teaching. Journal of Mathematics Teacher Education., Special Issue: Relations between theory and practice in mathematics teacher Education, 9(2), 187–211.
  • Jaworski, B. (2014). Unifying complexity in mathematics teaching-learning development: A theory-practice dialectic. In Y. Li et al. (Eds.), Transforming mathematics instruction: Multiple approaches and practices, advances in mathematics education (pp. 439–458). New York: Springer.
  • Leder, G., Pehkonen, E., & Törner, G. (Eds.). (2002). Beliefs: A hidden variable in mathematics education? Dordrecht: Kluwer Academic Publishers.
  • Maass, K., & Doorman, M. (2013). A model for a widespread implementation of inquiry-based learning. ZDM Mathematics Education, 45(6), 887–899.
  • Maass, J., & Schloeglmann, W. (Eds.). (2009). Beliefs and attitudes in mathematics education: New research results. Rotterdam: Sense Publishers.
  • Muis, K. R., Pekrun, R., et al. (2015). The curious case of climate change: Testing a theoretical model of epistemic beliefs, epistemic emotions, and complex learning. Learning and Instruction, 39, 168–183.
  • Novick, I. R., & Holyoak, K. J. (1991). Mathematical problem solving by analogy. Journal of Experimental Psychology: Learning, Memory, and Cognition, 17, 398–415.
  • Op’t Eynde, P., De Corte, E., & Verschaffel, L. (2006). Epistemic dimensions of students’ mathematics-related belief systems. International Journal of Educational Research, 45(1–2), 57–70.
  • Otte, M. (1994). Das Formale, das Soziale und das Subjektive. Eine Einführung in die Philosophie und Didaktik der Mathematik. Franfurt: Suhrkamp. (The Formal, the Social and the Subjective. An Introduction into Philosophy and Didactics of Mathematics) M. Ottes’s texts have been translated by Jim Edinberg).
  • Pekrun, R., & Linnenbink-Garcia, L. (2012). Academic emotions and student engagement. In S. L. Christenson, A. L. Reschly, & C. Wylie (Eds.), Handbook of research on student engagement (p. 259e282). New York: Springer.
  • Polya, G. (1945). How to solve it. Princeton: Princeton University Press.
  • Polya, G. (1954). Mathematics and plausible reasoning volume I: Induction and analogy in mathematics. Princeton: Princeton University Press.
  • Schoenfeld, A. H. (1985). Mathematical problem solving. New York: Academic.
  • Schoenfeld, A. H. (1987). What’s all the fuss about metacognition? In A. H. Schoenfeld (Ed.), Cognitive science and mathematics education (pp. 189–215). Hillsdale: Lawrence Erlbaum.
  • Schoenfeld, A. H. (2010). How we think: A theory of goal-oriented decision making and its educational applications. New York: Routledge.
  • Schoenfeld, A. (2016). Research in mathematics education. Review of Research in Education, 40, 497–528.
  • Stender, P. (2017). The use of heuristic strategies in modelling activities. Journal ZDM-Mathematics Education., on line version. https://doi.org/10.1007/s11858-017-0901-5.
  • Stillman, G. A. (2011). Applying metacognitive knowledge and strategies in applications and modelling tasks at secondary school. In G. Kaiser, W. Blum, R. B. Ferri, & G. A. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (ICTMA14) (pp. 165–180). Dordrecht: Springer Science+Business Media B.V; Springer.
  • Stillman, G. A., & Galbraith, P. L. (1998). Applying mathematics with real world connections: Metacognitive characteristics of secondary students. Educational Studies in Mathematics, 36(2), 157–194.