Comparison between pilot and lab scale testing of aluminide coated and uncoated ferritic steels under oxy-fuel and coal/thistle co-firing conditions

  1. Gutiérrez, M.
  2. Illana, A.
  3. Bahillo, A.
  4. Benito, M.J.
  5. García-Martín, G.
  6. Pérez, F.J.
  7. Agüero, A.
Revista:
Surface and Coatings Technology

ISSN: 0257-8972

Año de publicación: 2022

Volumen: 450

Páginas: 128982

Tipo: Artículo

DOI: 10.1016/J.SURFCOAT.2022.128982 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Surface and Coatings Technology

Resumen

The present study compares the biomass corrosion behavior of two diffusion aluminide coating obtained by slurry application, which were deposited on two low-chromium content steels, ferritic-martensitic P92 (8.7 wt% Cr) and ferritic T22 (2 wt% Cr). Their performance degradation was conducted under an oxy-fuel combustion environment for both coated and uncoated materials both under laboratory conditions and in a pilot plant burning thistle for 500 h. Exposures were carried out in the laboratory at two different temperatures, 600 °C and 650 °C, under a model atmosphere consisting of 60 % CO2, 30 % H2O, 8 % O2, bal.% N2 (in vol%), 500 vppm HCl and 2 vppm SO2. The pilot plant used a mixed fuel of 60 wt% coal and 40 wt% thistle that was burnt and the samples were exposed to a temperature range of 600–620 °C. After testing, the results revealed that the aluminide-coated materials exhibited a very high resistance under both extreme scenarios, with a variable protective character related to their Al content. On the contrary, uncoated material exhibited severe degradation, in particular T22. Microstructural and morphological studies showed up similar corrosion patterns and products on coated and uncoated materials for both testing environments.

Referencias bibliográficas

  • Armesto, (2003), Fuel, 82, pp. 993, 10.1016/S0016-2361(02)00397-6
  • Ni, (2006), Fuel Process. Technol., 87, pp. 461, 10.1016/j.fuproc.2005.11.003
  • (2013)
  • Xu, (2020), Sustainability, 12, pp. 3692, 10.3390/su12093692
  • (2013)
  • García-Galindo, (2010), Strojarstvo, 52, pp. 411
  • Montgomery, (2011), Mater. Corros., 62, pp. 593, 10.1002/maco.201005856
  • Pettersson, (2009), Oxid. Met., 72, pp. 159, 10.1007/s11085-009-9153-2
  • Tchoffor, (2013), Energy Fuel, 27, pp. 7510, 10.1021/ef401703a
  • Sadeghi, (2019), J. Therm. Spray Technol., 28, pp. 1749, 10.1007/s11666-019-00938-1
  • Vakkilainen, (2017)
  • Rodilla, (2018), Fuel, 215, pp. 506, 10.1016/j.fuel.2017.09.102
  • Wu, (2018), Prog. Energy Combust. Sci., 67, pp. 188, 10.1016/j.pecs.2018.01.004
  • Adamiec, (2009), Mater. Charact., 60, pp. 1093, 10.1016/j.matchar.2009.03.017
  • Agüero, (2018), Surf. Coat. Technol., 350, pp. 188, 10.1016/j.surfcoat.2018.05.082
  • Agüero, (2018), Surf. Coat. Technol., 350, pp. 119, 10.1016/j.surfcoat.2018.07.027
  • Kawahara, (2016), Coatings, 34
  • Agüero, (2008), Energy Mater., 3, pp. 35, 10.1179/174892407X248554
  • Song, (2018), Surf. Coat. Technol., 337, pp. 357, 10.1016/j.surfcoat.2018.01.025
  • Abu-warda, (2020), Corros. Sci., 173, 10.1016/j.corsci.2020.108747
  • Agüero, (2016), Oxid. Met., 85, pp. 263, 10.1007/s11085-015-9575-y
  • Stultz, (2005)
  • Viswanathan, (2008), Advanced, 166, pp. 47
  • Zhang, (2013)
  • Agüero, (2008), Mater. High Temp., 27, pp. 257, 10.3184/096034008X388812
  • Agüero, (2004)
  • Agüero, (2018), AIP Conf. Proc., 2033, 10.1063/1.5067095
  • Agüero, (2014), Mater. Corros., 65, pp. 149, 10.1002/maco.201307096
  • Audigié, (2020), Sol. Energy Mater. Sol. Cells, 210, 10.1016/j.solmat.2020.110514
  • Chandra, (2015), Oxid. Met., 83, pp. 291, 10.1007/s11085-014-9521-4
  • Niu, (2016), Prog. Energy Combust. Sci., 52, pp. 1, 10.1016/j.pecs.2015.09.003
  • Ma, (2009), Corros. Sci., 51, pp. 1861, 10.1016/j.corsci.2009.05.014
  • Saunders, (2008), Prog. Mater. Sci., 53, pp. 775, 10.1016/j.pmatsci.2007.11.001
  • Dudziak, (2017), J. Mater. Eng. Perform., 26, pp. 84, 10.1007/s11665-016-2423-7
  • Tomeczek, (2007), Corros. Sci., 49, pp. 1862, 10.1016/j.corsci.2006.10.012
  • Zeng, (2018), Energy Fuels, 32, pp. 10502, 10.1021/acs.energyfuels.8b02233
  • Vokál, (2008), Mater. Corros., 59, pp. 374, 10.1002/maco.200804118
  • Grégoire, (2021), Sol. Energy Mater. Sol. Cells, 223, 10.1016/j.solmat.2021.110974
  • Kiamehr, (2016), Mater. Corros., 68, pp. 82, 10.1002/maco.201609047
  • Aho, (2010), Fuel, 89, pp. 2376, 10.1016/j.fuel.2010.01.023
  • Oksa, (2014), Surf. Coat. Technol., 251, pp. 191, 10.1016/j.surfcoat.2014.04.025