Corrosion study of Ni-based alloy in ternary chloride salt for thermal storage application

  1. Lambrecht, Mickaël
  2. García-Martín, Gustavo
  3. de Miguel, María Teresa
  4. Lasanta, María Isabel
  5. Pérez, Francisco Javier
Revista:
Corrosion Science

ISSN: 0010-938X

Año de publicación: 2022

Volumen: 208

Páginas: 110673

Tipo: Artículo

DOI: 10.1016/J.CORSCI.2022.110673 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Corrosion Science

Resumen

MgCl2/NaCl/KCl salt appeared as a high-potential heat transfer fluid for concentrated solar application, offering a wide operating range and low cost. Nevertheless, MgCl2 hydrates and atmosphere relative humidity are the limiting factors for a real scale CSP plant, leading to severe corrosion. Thus, Inconel 617 was tested at 700ºC up to 24 h in air atmosphere to simulate a punctual failure in the inertization system of a plant. XRD and SEM-EDX analysis showed unstable multilayers growing in cascade, highlighting chromium, aluminum, magnesium, and oxygen activities. Additionally, A radial growth of MgCr2O4 at the expense of MgO grains was visualized.

Información de financiación

Financiadores

Referencias bibliográficas

  • Villada, (2021), Sol. Energy Mater. Sol. Cells, 232, 10.1016/j.solmat.2021.111344
  • Villada C, (2022), Front. Energy Res
  • Lambrecht, (2022), Sol. Energy Mater. Sol. Cells, pp. 237
  • Ding, (2019), AIP Conf. Proc., pp. 10
  • Hamdy, (2021), Sol. Energy, 224, pp. 1210, 10.1016/j.solener.2021.06.069
  • Ding, (2018), Sol. Energy Mater. Sol. Cells, 184, pp. 22, 10.1016/j.solmat.2018.04.025
  • Liu, (2021), Corros. Sci., 180, 10.1016/j.corsci.2020.109183
  • Liu, (2022), Corros. Sci., 194, 10.1016/j.corsci.2021.109921
  • Feng, (2022), Corros. Sci., 197, 10.1016/j.corsci.2022.110097
  • Gomez-Vidal, (2017), Mater. Degrad., pp. 9
  • Abu-warda, (2021), Surf. Coat. Technol., 418, 10.1016/j.surfcoat.2021.127277
  • D’Souza, (2021), Corros. Sci., 182, 10.1016/j.corsci.2021.109285
  • Huang, (2011), J. Anal. Appl. Pyrolysis, 91, pp. 159, 10.1016/j.jaap.2011.02.005
  • Smith and Veazey, Dehydration of magnesium chloride/patent. 1931: p. 12.
  • Zhang, (2019), J. Anal. Appl. Pyrolysis, 138, pp. 114, 10.1016/j.jaap.2018.12.014
  • Mortazavi, (2022), Sol. Energy Mater. Sol. Cells, 236, 10.1016/j.solmat.2021.111542
  • Wu, (2008), Metall. Mater. Trans. A, 39, pp. 2569, 10.1007/s11661-008-9618-y
  • Liu, (2017), Sol. Energy Mater. Sol. Cells, 170, pp. 77, 10.1016/j.solmat.2017.05.050
  • Grégoire, (2020), Sol. Energy Mater. Sol. Cells, 216, 10.1016/j.solmat.2020.110675
  • Liu, (2014), Corros. Sci., 83, pp. 396, 10.1016/j.corsci.2014.03.012
  • Ravi Shankar, (2013), Corros. Sci. Sect.
  • Ishitsuka, (2002), Corros. Sci., 44, pp. 247, 10.1016/S0010-938X(01)00059-2
  • Abramov, (2014), Molten Salts Chem. Technol., pp. 22
  • Hofmeister, (2015), Corros. Sci., 90, pp. 46, 10.1016/j.corsci.2014.09.009
  • Huang, (2011), J. Anal. Appl. Pyrolysis, 91, pp. 159, 10.1016/j.jaap.2011.02.005
  • Gomez-Vidal, (2017), Sol. Energy Mater. Sol. Cells, 166, pp. 222, 10.1016/j.solmat.2017.02.019
  • Grégoire, (2020), Sol. Energy Mater. Sol. Cells, 215, 10.1016/j.solmat.2020.110659
  • Fernández, (2020), J. Energy Storage, 29, 10.1016/j.est.2020.101381
  • Gomez-Vidal, (2017), Sol. Energy Mater. Sol. Cells, 166, pp. 234, 10.1016/j.solmat.2017.03.025
  • Ding, (2019), Sol. Energy Mater. Sol. Cells, 193, pp. 298, 10.1016/j.solmat.2018.12.020
  • Ong, (2020), Renew. Sustain. Energy Rev., 131, 10.1016/j.rser.2020.110006