Computational modelling of the local structure and thermophysical properties of ternary MgCl2-NaCl-KCl salt for thermal energy storage applications

  1. Lambrecht, Mickaël
  2. de Miguel, María Teresa
  3. Lasanta, María Isabel
  4. García-Martín, Gustavo
  5. Pérez, Francisco Javier
Revista:
International Journal of Heat and Mass Transfer

ISSN: 0017-9310

Año de publicación: 2022

Volumen: 196

Páginas: 123273

Tipo: Artículo

DOI: 10.1016/J.IJHEATMASSTRANSFER.2022.123273 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: International Journal of Heat and Mass Transfer

Resumen

Molten salts as heat transfer fluids (HTF) for concentrated solar power (CSP) plant application are considered as the best thermal storage medium, and more precisely molten chlorides, presenting a wide operating range and coupled with competitive cost. Furthermore, MgCl2-NaCl-KCl (MgNaK) mixture appeared as the most promising one but need further studies to better understand its thermophysical properties. Indeed, its hydrated form leads to the formation of corrosive compounds. In this research, two different methods are used to model the ternary mixture. The dehydration process is evaluated by thermodynamical calculations with Thermocalc software. Then, the local structure, thermal conductivity and viscosity are estimated by means of molecular dynamics simulation, with LAMMPS package. The results were close to past simulations studies and experimental references, but discrepancies need to be further minimized regarding some variable fluctuations.

Información de financiación

Financiadores

Referencias bibliográficas

  • Lambrecht, (2022), Solar Energy Materials and Solar Cells, 237, 10.1016/j.solmat.2021.111557
  • Zhang, (2019), Journal of Analytical and Applied Pyrolysis, 138, pp. 114, 10.1016/j.jaap.2018.12.014
  • Vignarooban, (2015), Applied Energy, 146, pp. 383, 10.1016/j.apenergy.2015.01.125
  • Sun, (2020), Corrosion Science, 164, 10.1016/j.corsci.2019.108350
  • Ding, (2021), Solar Energy Materials and Solar Cells, 223, 10.1016/j.solmat.2021.110979
  • Zhao, (2020), Solar Energy Materials and Solar Cells, 215, 10.1016/j.solmat.2020.110663
  • Huang, (2011), Journal of Analytical and Applied Pyrolysis, 91, pp. 159, 10.1016/j.jaap.2011.02.005
  • Li, (2017), Solar Energy, 152, pp. 57, 10.1016/j.solener.2017.03.019
  • Liang, (2021), Journal of Materials Science & Technology, 75, pp. 78, 10.1016/j.jmst.2020.09.040
  • Wu, (2020), Applied Thermal Engineering, 171, 10.1016/j.applthermaleng.2020.114917
  • Pathak, (2017), J. Phys. Chem., pp. 16
  • Zhang, (2021), Case Studies in Thermal Engineering, 25, 10.1016/j.csite.2021.100973
  • Pan, (2016), International Journal of Heat and Mass Transfer, 103, pp. 417, 10.1016/j.ijheatmasstransfer.2016.07.042
  • Gheribi, (2014), Solar Energy Materials and Solar Cells, 126, pp. 11, 10.1016/j.solmat.2014.03.028
  • Venkateswara Rao Manga, (2016), The Journal of Chemical Physics, pp. 12
  • Venkateswara Rao Manga, (2014), CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, pp. 8
  • Xu, (2021), Journal of Molecular Liquids, 341, 10.1016/j.molliq.2021.117321
  • Pan, (2021), Computational Materials Science, 187, 10.1016/j.commatsci.2020.110055
  • Ding, (2017), Nano Energy, 39, pp. 380, 10.1016/j.nanoen.2017.07.020
  • Wu, (2019), Computational Materials Science, 170, 10.1016/j.commatsci.2019.05.049
  • Wang, (2014), The Journal of Physical Chemistry B, 118, pp. 10196, 10.1021/jp5050332
  • Gheribi, (2022), Solar Energy Materials and Solar Cells, 236, 10.1016/j.solmat.2021.111478
  • Takase, (2000), ECS Proceedings,, 99, pp. 376
  • Galamba, (2007), The Journal of Chemical Physics, pp. 126
  • Zhou, (2022), Solar Energy Materials and Solar Cells, 239, 10.1016/j.solmat.2022.111649
  • Villada, (2021), Solar Energy Materials and Solar Cells, 232, 10.1016/j.solmat.2021.111344
  • G. Mohan, et al., Assessment of a novel ternary eutectic chloride salt for next generation high-temperature sensible heat storage. Energy Conversion and Management, 2018. 167: p. 156-164.
  • Hillert, (2001), Journal of Alloys and Compounds, 320, pp. 161, 10.1016/S0925-8388(00)01481-X
  • Andersson, (2002), Calphad, 26, pp. 273, 10.1016/S0364-5916(02)00037-8
  • Thompson, (2022), Computer Physics Communications, 271, 10.1016/j.cpc.2021.108171
  • Zeron, (2019), The Journal of Chemical Physics, pp. 17
  • Ohtori, (2009), The Journal of Chemical Physics, 130, 10.1063/1.3086856
  • ZHANG, (2018), Eur. J. Mineral., pp. 13
  • Boda, (2008), Molecular Physics, 106, pp. 2367, 10.1080/00268970802471137
  • Edwards, (1975), J. Phys. C: Solid State Phys., 8, pp. 3483, 10.1088/0022-3719/8/21/018
  • Allen, (1992), J. Phys.: Condens. Matter, 4, pp. 1407
  • Chliatzou, (2018), Journal of Physical and Chemical Reference Data, 47, 10.1063/1.5052343
  • Janz, G.J., Allen, C.B., Bansal, N.P., Murphy, R.M., Tomkins, R.P.T.,, Physical properties data compilations relevant to energy storage. II. Molten salts: data on single and multi-component salt systems. . U.S. Department of Commerce/National Bureau of Standards, NSRDS-NBS 61, Part II, 1979.
  • Nagasaka, Y., Nakazawa, N., Nagashima, A.,, Experimental determination of the thermal diffusivity of molten salts.1992.
  • Chartrand, (2016), THE JOURNAL OF CHEMICAL PHYSICS, 144