Hidden inflaton dark matter

  1. Almeida, Juan P. Beltrán 2
  2. Bernal, Nicolás 3
  3. Rubio Peña, Javier 145
  4. Tenkanen, Tommi 67
  1. 1 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

  2. 2 Departamento de Física, Universidad Antonio Nariño, Bogotá, 47A-15, Colombia
  3. 3 Centro de Investigaciones, Universidad Antonio Nariño, Bogotá, 47A-15, Colombia
  4. 4 Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg, Philosophenweg 16, Heidelberg, 69120, Germany
  5. 5 Department of Physics, Helsinki Institute of Physics, University of Helsinki, FI-00014, Finland
  6. 6 Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles Street, Baltimore, 21218, MD, United States
  7. 7 Astronomy Unit, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom
Revista:
Journal of Cosmology and Astroparticle Physics

ISSN: 1475-7516

Año de publicación: 2019

Volumen: 2019

Número: 03

Páginas: 012-012

Tipo: Artículo

DOI: 10.1088/1475-7516/2019/03/012 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Journal of Cosmology and Astroparticle Physics

Resumen

If cosmic inflation was driven by an electrically neutral scalar field stable on cosmological time scales, the field necessarily constitutes all or part of dark matter (DM). We study this possibility in a scenario where the inflaton field s resides in a hidden sector, which is coupled to the Standard Model sector through the Higgs portal λhs s2Script H†Script H and non-minimally to gravity via ξs s2 R. We study scenarios where the field s first drives inflation, then reheats the Universe, and later constitutes all DM. We consider two benchmark scenarios where the DM abundance is generated either by production during reheating or via non-thermal freeze-in. In both cases, we take into account all production channels relevant for DM in the mass range from keV to PeV scale. On the inflationary side, we compare the dynamics and the relevant observables in two different but well-motivated theories of gravity (metric and Palatini), discuss multifield effects in case both fields (s and h) were dynamical during inflation, and take into account the non-perturbative nature of particle production during reheating. We find that, depending on the initial conditions for inflation, couplings and the DM mass, the scenario works well especially for large DM masses, 102 GeV≲ ms≲ 106 GeV, although there are also small observationally allowed windows at the keV and MeV scales. We discuss how the model can be tested through astrophysical observations.

Referencias bibliográficas

  • 10.1103/PhysRevLett.97.161301
  • 10.1103/PhysRevD.75.083512
  • 10.1103/PhysRevD.75.127301
  • 10.1103/PhysRevD.77.121301
  • 10.1103/PhysRevD.80.103508
  • 10.1103/PhysRevD.80.123507
  • 10.1103/PhysRevD.83.063502
  • V.V. Khoze, (2013), J. High Energy Phys., 2013, pp. 215, 10.1007/JHEP11(2013)215
  • K. Mukaida, (2014), J. Cosmol. Astropart. Phys., 2014, pp. 062, 10.1088/1475-7516/2014/08/062
  • 10.1103/PhysRevD.91.023509
  • 10.1103/PhysRevD.93.103531
  • F. Kahlhoefer, (2015), J. Cosmol. Astropart. Phys., 2015, pp. 015, 10.1088/1475-7516/2015/11/015
  • T. Tenkanen, (2016), J. High Energy Phys., 2016, pp. 049, 10.1007/JHEP09(2016)049
  • R. Daido, (2017), J. Cosmol. Astropart. Phys., 2017, pp. 044, 10.1088/1475-7516/2017/05/044
  • S. Choubey, (2017), J. High Energy Phys., 2017, pp. 080, 10.1007/JHEP11(2017)080
  • R. Daido, (2018), J. High Energy Phys., 2018, pp. 104, 10.1007/JHEP02(2018)104
  • D. Hooper
  • D. Borah
  • A. Torres Manso, (2019), J. High Energy Phys., 2019, pp. 020, 10.1007/JHEP02(2019)020
  • J.G. Rosa
  • Planck collaboration
  • 10.1103/PhysRevLett.73.3195
  • 10.1103/PhysRevD.56.3258
  • K. Mukaida, (2013), J. High Energy Phys., 2013, pp. 053, 10.1007/JHEP12(2013)053
  • 10.1103/PhysRevLett.88.091304
  • L.J. Hall, (2010), J. High Energy Phys., 2010, pp. 080, 10.1007/JHEP03(2010)080
  • 10.1140/epjc/s10052-018-5662-y
  • 10.1142/S0217751X1730023X
  • 10.1016/j.cpc.2018.04.027
  • 10.1103/PhysRevD.94.075015
  • 10.1103/PhysRevD.95.035004
  • 10.1103/PhysRevD.98.023533
  • A. Goudelis, (2018), J. High Energy Phys., 2018, pp. 014, 10.1007/JHEP10(2018)014
  • K. Enqvist, (2016), J. Cosmol. Astropart. Phys., 2016, pp. 025, 10.1088/1475-7516/2016/11/025
  • S. Rusak
  • N.D. Birrell, (1984), Quantum fields in curved space, Cambridge Monographs on Mathematical Physics, https://doi.org/10.1017/CBO9780511622632Cambridge Univ. Press
  • 10.1016/j.physletb.2007.11.072
  • Planck collaboration
  • 10.3389/fspas.2018.00050
  • 10.1016/j.physletb.2008.06.014
  • 10.1103/PhysRevD.83.044018
  • S. Rasanen, (2017), J. Cosmol. Astropart. Phys., 2017, pp. 047, 10.1088/1475-7516/2017/11/047
  • 10.1103/PhysRevD.96.103542
  • T. Tenkanen, (2017), J. Cosmol. Astropart. Phys., 2017, pp. 001, 10.1088/1475-7516/2017/12/001
  • A. Racioppi, (2017), J. Cosmol. Astropart. Phys., 2017, pp. 041, 10.1088/1475-7516/2017/12/041
  • T. Markkanen, (2018), J. Cosmol. Astropart. Phys., 2018, pp. 029, 10.1088/1475-7516/2018/03/029
  • 10.1103/PhysRevD.97.083513
  • 10.1103/PhysRevD.97.123514
  • V.-M. Enckell, (2018), J. Cosmol. Astropart. Phys., 2018, pp. 005, 10.1088/1475-7516/2018/06/005
  • P. Carrilho, (2018), J. Cosmol. Astropart. Phys., 2018, pp. 032, 10.1088/1475-7516/2018/06/032
  • V.-M. Enckell
  • I. Antoniadis, (2018), J. Cosmol. Astropart. Phys., 2018, pp. 028, 10.1088/1475-7516/2018/11/028
  • S. Rasanen
  • K. Kannike
  • S. Rasanen
  • 10.1103/RevModPhys.82.451
  • S. Heeba, (2018), J. Cosmol. Astropart. Phys., 2018, pp. 048, 10.1088/1475-7516/2018/11/048
  • G. Degrassi ., (2012), J. High Energy Phys., 2012, pp. 098, 10.1007/JHEP08(2012)098
  • 10.1140/epjc/s10052-011-1821-0
  • 10.1103/PhysRevLett.112.011302
  • 10.1103/PhysRevD.89.064044
  • G. Ballesteros, (2017), J. Cosmol. Astropart. Phys., 2017, pp. 001, 10.1088/1475-7516/2017/08/001
  • K. Enqvist, (2013), J. Cosmol. Astropart. Phys., 2013, pp. 057, 10.1088/1475-7516/2013/10/057
  • J.R. Espinosa ., (2015), J. High Energy Phys., 2015, pp. 174, 10.1007/JHEP09(2015)174
  • 10.1103/PhysRevD.79.063531
  • 10.1016/S0370-1573(98)00128-8
  • 10.1007/s10909-015-1403-x
  • T. Matsumura .
  • Simons observatory collaboration
  • 10.1103/PhysRevD.87.096001
  • 10.1103/PhysRevD.83.123522
  • T. Tenkanen, (2016), J. Cosmol. Astropart. Phys., 2016, pp. 037, 10.1088/1475-7516/2016/09/037
  • F. Bezrukov, (2009), J. Cosmol. Astropart. Phys., 2009, pp. 029, 10.1088/1475-7516/2009/06/029
  • 10.1103/PhysRevD.78.063545
  • K. Kainulainen, (2016), J. Cosmol. Astropart. Phys., 2016, pp. 022, 10.1088/1475-7516/2016/06/022
  • 10.1103/PhysRevD.94.083516
  • S. Nurmi, (2015), J. Cosmol. Astropart. Phys., 2015, pp. 001, 10.1088/1475-7516/2015/11/001
  • 10.1103/PhysRevD.77.065014
  • K. Enqvist, (2014), J. Cosmol. Astropart. Phys., 2014, pp. 035, 10.1088/1475-7516/2014/08/035
  • 10.1016/j.physletb.2018.02.036
  • 10.1103/PhysRevX.1.021026
  • 10.1140/epjc/s10052-019-6550-9
  • 10.1086/171833
  • N. Bernal, (2016), J. Cosmol. Astropart. Phys., 2016, pp. 018, 10.1088/1475-7516/2016/03/018
  • N. Bernal, (2016), J. Cosmol. Astropart. Phys., 2016, pp. 006, 10.1088/1475-7516/2016/01/006
  • 10.1103/PhysRevD.94.063506
  • 10.1103/PhysRevD.95.115023
  • 10.1103/PhysRevD.96.023001
  • J. Herms, (2018), J. Cosmol. Astropart. Phys., 2018, pp. 036, 10.1088/1475-7516/2018/06/036
  • 10.1140/epjc/s10052-019-6608-8
  • N. Bernal, (2018), J. Cosmol. Astropart. Phys., 2018, pp. 020, 10.1088/1475-7516/2018/12/020
  • J. Baur, (2016), J. Cosmol. Astropart. Phys., 2016, pp. 012, 10.1088/1475-7516/2016/08/012
  • 10.1103/PhysRevD.96.023522
  • 10.1103/PhysRevD.97.063002
  • 10.1103/PhysRevD.98.075017
  • G. Bélanger .
  • M. Markevitch ., (2004), Astrophys. J., 606, pp. 819, 10.1086/383178
  • D. Clowe, (2004), Astrophys. J., 604, pp. 596, 10.1086/381970
  • S.W. Randall, (2008), Astrophys. J., 679, pp. 1173, 10.1086/587859
  • 10.1038/370629a0
  • 10.1086/187350
  • J.F. Navarro, (1997), Astrophys. J., 490, pp. 493, 10.1086/304888
  • 10.1155/2010/789293
  • S.-H. Oh ., (2011), Astron. J., 142, pp. 24, 10.1088/0004-6256/142/1/24
  • M.G. Walker, (2011), Astrophys. J., 742, pp. 20, 10.1088/0004-637X/742/1/20
  • 10.1111/j.1745-3933.2011.01074.x
  • 10.1093/mnras/stu1477
  • 10.1016/j.physrep.2017.11.004
  • 10.1103/PhysRevLett.84.3760
  • B.D. Wandelt
  • 10.1103/PhysRevD.81.083522
  • 10.1111/j.1365-2966.2012.21182.x
  • 10.1093/mnras/sts514
  • 10.1093/mnras/sts535
  • 10.1093/mnrasl/sls053
  • 10.1093/mnras/stu1713
  • 10.1093/mnras/stv1470
  • 10.1103/PhysRevLett.116.041302
  • E. Bulbul, (2014), Astrophys. J., 789, pp. 13, 10.1088/0004-637X/789/1/13
  • 10.1103/PhysRevLett.113.251301
  • 10.1016/j.physletb.2015.07.080
  • 10.1103/PhysRevD.96.035018
  • 10.1103/PhysRevLett.120.061301
  • 10.1134/S1063776115030152
  • F. Bezrukov, (2015), Zh. Eksp. Teor. Fiz., 147, pp. 389
  • 10.1109/MCSE.2007.53
  • 10.1109/MCSE.2007.55
  • E. Jones ., (2001)
  • 10.1103/PhysRevD.84.123504
  • S. Casas
  • 10.1103/PhysRevD.97.043520
  • 10.1016/j.physletb.2016.08.037
  • 10.1016/j.physletb.2016.07.058
  • 10.1016/0370-2693(82)90867-X
  • 10.1016/j.physletb.2018.04.062