Big data y ciencia de los datos para una nefrología personalizada: ¿estamos preparados para una "nefrología inteligente"?

  1. Hueso, Miguel 9
  2. Ibeas, José 23
  3. Revuelta, Ignacio 45
  4. Santos-Arteaga, Francisco-J. 8
  5. Soler, María José 67
  6. Buades, Juan Manuel 1
  1. 1 Servicio de Nefrología. Hospital Universitario Son Llàtzer. Palma de Mallorca
  2. 2 Servicio de Nefrología. Parc Taulí Hospital Universitari. Institut d’Investigació i Innovació Parc Taulí I3PT. Universitat Autònoma
  3. 3 de Barcelona. Sabadell. Barcelona
  4. 4 Servicio de Nefrología y Trasplante Renal. Hospital Clínic. Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS).
  5. 5 Barcelona
  6. 6 Nephrology Research Group. Vall d’Hebron Research Institute (VHIR). Nephrology Department. Hospital Universitari
  7. 7 Vall d’Hebron. Universitat Autònoma de Barcelona. Barcelona
  8. 8 Faculty of Economics and Management. Free University of Bolzano. Bolzano. Italy
  9. 9 Servicio de Nefrología. Hospital de Bellvitge. L’Hospitalet de Llobregat. Barcelona
Revista:
Nefrología

ISSN: 0211-6995

Año de publicación: 2019

Volumen: 11

Número: 02

Páginas: 1-10

Tipo: Artículo

Otras publicaciones en: Nefrología

Resumen

El objetivo de la medicina personalizada es ofrecer a cada paciente un tratamiento adecuado en el momento preciso.En la actualidad, para demostrar que un tratamiento es eficaz es necesario obtener datos de costosos ensayos clínicoscontrolados, aleatorizados y multicéntricos (medicina basada en la evidencia). Sin embargo, los resultados puedenno demostrar eficacia en la población seleccionada, por lo que en la actualidad se recomienda un análisis previo dedatos retrospectivos recogidos en grandes bases de datos (big data), que pueden proceder de fuentes heterogéneas(datos de laboratorio, datos moleculares y genéticos, cursos clínicos, imágenes, fármacos, etc.) con el objetivo deconocer qué variables modifican los resultados del tratamiento médico en la “vida real”. Para el análisis de este bigdata y para obtener nuevo conocimiento es necesario utilizar nuevas herramientas y potentes tecnologías, generando una “nueva” ciencia basada en los datos. Esta ciencia de los datos se encuentra en continua expansión con eldesarrollo de nuevos métodos dedicados a la recogida de datos, su almacenamiento, depuración, procesamiento yanálisis. Este conocimiento generado por los datos tendrá un impacto en la práctica clínica con la instauración detratamientos personalizados, diseño de fármacos inteligentes, identificación de poblaciones de riesgo o rastreode información en la historia clínica informatizada. El objetivo de esta revisión es mostrar algunas de las oportunidades que ofrece la ciencia de los datos a la nefrología, señalar a qué retos se enfrenta y proponer posibles aplicaciones para una nefrología personalizada

Referencias bibliográficas

  • DZone [consultado 19-11-2019]. Disponible en: https://dzone.com/
  • Ashley EA. Towards precision medicine. Nat Rev Genet. 2016;17:507-22.
  • Feldman B, Martin EM, Skotnes T. Big Data in Healthcare Hype and Hope. Big Data; 2012.
  • Eysenbach G. What is e-health? J Med Internet Res. 2001;3:1-5.
  • Hernández Medrano I, Tello Guijarro J, Belda C, Ureña A, Salcedo I, Espinosa-Anke L, et al. Savana: Re-using Electronic Health Records with Artificial Intelligence. International Journal of Interactive Multimedia and Artificial Intelligence. 2017;4:8-12.
  • Muñoz Carrero A, Romero Gutiérrez A, Marco Cuenca G, Abad Acebedo I, Cáceres Tello J, Sánchez de Madariaga R, et al. Manual Práctico de Interoperabilidad Semántica para Entornos Sanitarios Basada en Arquetipos. Madrid: Unidad de Investigación en Telemedicina y e-Salud, Instituto de Salud Carlos III – Ministerio de Economía y Competitividad; 2013.
  • Hulsen T, Jamuar SS, Moody AR, Karnes JH, Varga O, Hedensted S, et al. From Big Data to Precision Medicine. Front Med (Lausanne). 2019;6:34.
  • Yao JT, Yao YY. A granular computing approach to machine learning. Proceedings of the 1st International Conference on Fuzzy Systems and Knowledge Discovery (FSKD’02). 2002.
  • Zhou L, Fujita H. Posterior probability based ensemble strategy using optimizing decision directed acyclic graph for multi-class classification. Information Sciences. 2017;400-401:142-16.
  • Skowron A, Jankowski A, Dutta S. Interactive granular computing. Granular Computing. 2016;1:95-113.
  • Wang G, Yang J, Xu J. Granular computing: from granularity optimization to multi-granularity joint problem solving. Granular Computing. 2017;2:105-20.
  • Bappalige SP. An introduction to Apache Hadoop for Big Data [consultado 19-11-2019]. Disponible en: https://opensource.com/ life/14/8/intro-apache-hadoop-big-data
  • Balas EA, Vernon M, Magrabi F, Gordon LT, Sexton J. Big Data Clinical Research: Validity, Ethics, and Regulation. Stud Health Technol Inform. 2015;216:448-452.
  • Terry K, Fridsma D, Haley D, Hepp K; Medical Economics Staff. The future of interoperability. Med Econ. 2014;91:30, 32-4, 36.
  • Qiu J, Wu Q, Ding G, Xu Y, Feng S. A survey of machine learning for big data processing. EURASIP Journal on Advances in Signal Processing. 2016;2016:67.
  • Li J, Wong Y, Zhao Q, Kankanhalli MS. Learning to Learn from Noisy Labeled Data. 2019 [consultado 19-11-2019]. Disponible en: https://github.com/LiJunnan1992/MLNT
  • Sayed-Mouchaweh M, editor. Learning from Data Streams in Evolving Environments: Methods and Applications. Springer; 2019.
  • Monleón Getino A. El impacto del Big-data en la Sociedad de la Información. Significado y utilidad. Historia y Comunicación Social. 2015;20:427-45.
  • Reglamento (UE) 2016/679 del Parlamento Europeo y del Consejo de 27 de abril de 2016 relativo a la protección de las personas físicas en lo que respecta al tratamiento de datos personales y a la libre circulación de estos datos y por el que se deroga la directiva 95/46/CE (reglamento general de protección de datos). Diario Oficial de la Unión Europea. 2016:L119/1-88.
  • Niel O, Bastard P. Artificial Intelligence in Nephrology: Core Concepts, Clinical Applications, and Perspectives. Am J Kidney Dis. 2019;74:803-10.
  • Toloo M, Zandi A, Emrouznejad A. Evaluation efficiency of large scale data set with negative data: an artificial neural networks approach. The Journal of Supercomputing. 2015;71:2397-411.
  • Ahmadvand S, Pishvaee MS. An efficient method for kidney allocation problem: a credibility-based fuzzy common weights data envelopment analysis approach. Health Care Manag Sci. 2018;21: 587-603.
  • Arteaga FJS, Caprio DD, Cucchiari D, Campistol JM, Oppenheimer F, Diekmann F, et al. Modeling Patients as Dynamical Systems: Evaluating the Efficiency of Kidney Transplantation through Multi-Stage Data Envelopment Analysis [abstract]. Am J Transplant. 2019;19 Suppl 3.
  • Colpaert K, Hoste EA, Steurbaut K, Benoit D, Van Hoecke S, De Turck F, et al. Impact of real-time electronic alerting of acute kidney injury on therapeutic intervention and progression of RIFLE class. Crit Care Med. 2012;40(4):1164-70.
  • He J, Hu Y, Zhang X, Wu L, Waitman LR, Liu M. Multi-perspective predictive modeling for acute kidney injury in general hospital populations using electronic medical records. JAMIA Open. 2019;2: 115-22.
  • Sawhney S, Fraser SD. Epidemiology of AKI: Utilizing Large Databases to Determine the Burden of AKI. Adv Chronic Kidney Dis. 2017;24:194-204.
  • Bagshaw SM, Goldstein SL, Ronco C, Kellum JA; ADQI 15 Consensus Group. Acute kidney injury in the era of big data: The 15 th Consensus Conference of the Acute Dialysis Quality Initiative (ADQI). Can J Kidney Health Dis. 2016;3:5.
  • Nadkarni GN, Coca SG. Temporal trends in AKI: Insights from big data. Clin J Am Soc Nephrol. 2016;11:1-3.
  • Gallego J, Pedraza A, Lopez S, Steiner G, Gonzalez L, Laurinavicius A, et al. Glomerulus Classification and Detection Based on Convolutional Neural Networks. J Imaging. 2018;4:20.
  • Zhao Y, Yang CR, Raghuram V, Parulekar J, Knepper MA. Big: A large-scale data integration tool for renal physiology. Am J Physiol Renal Physiol. 2016;311:F787-92.
  • Huling JC, Pisitkun T, Song JH, Yu MJ, Hoffert JD, Knepper MA. Gene expression databases for kidney epithelial cells. Am J Physiol Renal Physiol. 2012;302:F401-7.
  • Cisek K, Krochmal M, Klein J, Mischak H. The application of multi-omics and systems biology to identify therapeutic targets in chronic kidney disease. Nephrol Dial Transplant. 2016;31:2003-11.
  • Morris AP, Le TH, Wu H, Akbarov A, Van der Most PJ, Hemani G, et al. Trans-ethnic kidney function association study reveals putative causal genes and effects on kidney-specific disease aetiologies. Nat Comm. 2019;10:29.
  • Singh K, Betensky RA, Wright A, Curhan GC, Bates DW, Waikar SS. A concept-wide association study of clinical notes to discover new predictors of kidney failure. Clin J Am Soc Nephrol. 2016;11:2150-8.
  • Giri A, Hellwege JN, Keaton JM, Park J, Qiu C, Warren HR, et al. Trans-ethnic association study of blood pressure determinants in over 750,000 individuals. Nat Genet. 2019;51:51-62.
  • Mahajan A, Rodan ARR, Le THH, Gaulton KJ, Haessler J, Stilp AM, et al. Trans-ethnic Fine Mapping Highlights Kidney-Function Genes Linked to Salt Sensitivity. Am J Hum Genet. 2016;99:636-46.
  • Erickson KF, Qureshi S, Winkelmayer WC. The Role of Big Data in the Development and Evaluation of US Dialysis Care. Am J Kidney Dis. 2018;72:560-8.
  • Vito D, Casagrande G, Bianchi C, Costantino ML. How to extract clinically useful information from large amount of dialysis related stored data. Conf Proc IEEE Eng Med Biol Soc. 2015;2015:6812-5.
  • Barbieri C, Molina M, Ponce P, Tothova M, Cattinelli I, Ion Titapiccolo J, et al. An international observational study suggests that artificial intelligence for clinical decision support optimizes anemia management in hemodialysis patients. Kidney Int. 2016;90:422-9.
  • Barbieri C, Bolzoni E, Mari F, Cattinelli I, Bellocchio F, Martin JD, et al. Performance of a predictive model for long-Term hemoglobin response to darbepoetin and iron administration in a large cohort of hemodialysis patients. PLoS One. 2016;11:e0148938.
  • Canaud B, Barbieri C, Marcelli D, Bellocchio F, Bowry S, Mari F, et al. Optimal convection volume for improving patient outcomes in an international incident dialysis cohort treated with online hemodiafiltration. Kidney Int. 2015;88:1108-16.
  • Barbieri C, Mari F, Stopper A, Gatti E, Escandell-Montero P, Martínez-Martínez JM, et al. A new machine learning approach for predicting the response to anemia treatment in a large cohort of End Stage Renal Disease patients undergoing dialysis. Comput Biol Med. 2015;61:56-61.
  • Ion Titapiccolo J, Ferrario M, Barbieri C, Marcelli D, Mari F, Gatti E, et al. Predictive modeling of cardiovascular complications in incident hemodialysis patients. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:3943-6.
  • Chen B, Fan VY, Chou YJ, Kuo CC. Costs of care at the end of life among elderly patients with chronic kidney disease: patterns and predictors in a nationwide cohort study. BMC Nephrology. 2017; 18:1-14.
  • Massie AB, Kuricka LM, Segev DL. Big data in organ transplantation: Registries and administrative claims. Am J Transplant. 2014;14: 1723-30.
  • Saran R, Steffick D, Bragg-Gresham J. The China Kidney Disease Network (CK-NET): “Big Data-Big Dreams”. Am J Kidney Dis. 2017; 69:713-6.
  • Sirgo G, Esteban F, Gómez J, Moreno G, Rodríguez A, Blanch L, et al. Validation of the ICU-DaMa tool for automatically extracting variables for minimum dataset and quality indicators: The importance of data quality assessment. Int J Med Inform. 2018;112: 166-72.
  • Barisoni L, Hodgin JB. Digital pathology in nephrology clinical trials, research, and pathology practice. Curr Opin Nephrol Hypertens. 2017;26:450-9.
  • Hermsen M, De Bel T, Den Boer M, Steenbergen EJ, Kers J, Florquin S, et al. Deep Learning-Based Histopathologic Assessment of Kidney Tissue. J Am Soc Nephrol. 2019;30:1968-79.
  • Denic A, Morales MC, Park WD, Smith BH, Kremers WK, Alexander MP, et al. Using computer-assisted morphometrics of 5-year biopsies to identify biomarkers of late renal allograft loss. Am J Transplant. 2019;19:2846-54.
  • Regge D, Mazzetti S, Giannini V, Bracco C, Stasi M. Big data in oncologic imaging. Radiol Med. 2017;122:458-63.
  • Campanella G, Hanna MG, Geneslaw L, Miraflor A, Werneck Krauss Silva V, Busam KJ, et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat Med. 2019;25:1301-9.
  • Briceño J, Cruz-Ramírez M, Prieto M, Navasa M, Ortiz de Urbina J, Orti R, et al. Use of artificial intelligence as an innovative donor-recipient matching model for liver transplantation: results from a multicenter Spanish study. J Hepatol. 2014;61:1020-8.
  • Dorado-Moreno M, Pérez-Ortiz M, Gutiérrez PA, Ciria R, Briceño J, Hervás-Martínez C. Dynamically weighted evolutionary ordinal neural network for solving an imbalanced liver transplantation problem. Artif Intell Med. 2017;77:1-11.
  • Mark E, Goldsman D, Gurbaxani B, Keskinocak P, Sokol J. Using machine learning and an ensemble of methods to predict kidney transplant survival. PLoS One. 2019;14:0209068.
  • Sapir-Pichhadze R, Kaplan B. Seeing the Forest for the Trees. Transplantation. 2019: doi:10.1097/TP.0000000000002923. [Epub ahead of print].
  • Loupy A, Toquet C, Rouvier P, Beuscart T, Bories MC, Varnous S, et al. Late Failing Heart Allografts: Pathology of Cardiac Allograft Vasculopathy and Association With Antibody-Mediated Rejection. Am J Transplant. 2016;16:111-20.
  • Aubert O, Higgins S, Bouatou Y, Yoo D, Raynaud M, Viglietti D, et al. Archetype analysis identifies distinct profiles in renal transplant recipients with transplant glomerulopathy associated with allograft survival. J Am Soc Nephrol. 2019;30:625-39.
  • Mark E, Goldsman D, Keskinocak P, Sokol J. Using machine learning to estimate survival curves for patients receiving an increased risk for disease transmission heart, liver, or lung versus waiting for a standard organ. Transpl Infect Dis. 2019;21:e13181.
  • Garcia-Vidal C, Sanjuan G, Puerta-Alcalde P, Moreno-García E, Soriano A. Artificial intelligence to support clinical decision-making processes. EBioMedicine. 2019;46:27-9.
  • Fournier M-C, Foucher Y, Blanche P, Legendre C, Girerd S, Ladrière M, et al; DIVAT Consortium. Dynamic predictions of long-term kidney graft failure: an information tool promoting patient-centred care. Nephrol Dials Transplant. 2019;34:1961-9.