Tendencias tecnológicas

  1. Javier Vicente Sánchez 1
  2. Domingo Marquina Díaz 1
  3. Pedro Lorenzo González 1
  1. 1 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

Journal:
Cuadernos de estrategia

ISSN: 1697-6924

Year of publication: 2022

Issue Title: La amenaza biológica

Issue: 217

Pages: 189-224

Type: Article

More publications in: Cuadernos de estrategia

Abstract

The technological advances in the last years have allowed an important development of life sciences. In a global world in which technology is interconnected with multiple options, the development of a certain application for a purpose is rapidly adapted for its application in other fields, exponentially increasing the versatility of such advances. Bioinformatics development since the middle of the 20th century has allowed the design of new process, applications, and analytical protocols for biological data management, especially in the first decades of this century. The advances regarding structure, function, and engineering of nucleic acids, especially DNA, have been the power that has allow, and nowadays allows, the development of genetic engineering techniques. These procedures enable the development of new functions in different microorganisms or even the development of synthetic ones using the genetic information from databases. Science democratization, together with the protocols and knowledge that conforms it, has triggered the collaboration of different people, scientific or amateur. The misuse of the new technologies by some actors conforms its risk since technology is designed for good purposes. Every technological development designed with a good objective could cause, in any moment, a deliberated, or unintended, harm.

Bibliographic References

  • Ainscough, M. J. (2002). Next generation bioweapons: The technology of genetic engineering applied to biowarfare and bioterrorism. AIR UNIV MAXWELL AFB AL.
  • Carter, S. R. y Warner, C.M. (2018). Trends in synthetic biology applications, tools, industry, and oversight and their security implications. Health Secur. 16, pp. 320–333. https://doi. org/10.1089/hs.2018.0067
  • Creager, A. N. H. (2020). Recipes for recombining DNA: A history of Molecular Cloning: A Laboratory Manual. BJHS Themes. 5, pp. 225–243. https://doi.org/10.1017/bjt.2020.5
  • Dixon, T. (2019). Mapping the potential impact of synthetic biology on Australian foreign policy. Australian Journal of International Affairs. 73, pp. 270–288. https://doi.org/10.1080/103 57718.2019.1584154
  • Dixon, T.; Curach, N. y Pretorius, I. (2020). Bio-informational futures. EMBO Rep 21. https://doi.org/10.15252/embr.202050036
  • Douglas, T. y Savulescu, J. (2010). Synthetic biology and the ethics of knowledge. J Med Ethics. 36, pp. 687–693. https://doi.org/10.1136/jme.2010.038232
  • Dover, N., et al. (2014). Molecular characterization of a novel botulinum neurotoxin type H gene. The Journal of infectious diseases. 209(2), 192-202.
  • Gauthier, J., et al. (2019). A brief history of bioinformatics. Brief Bioinform. 20, pp. 1981–1996. https://doi.org/10.1093/bib/bby063
  • Gronvall, G. K. (2019). Synthetic Biology: Biosecurity and Biosafety Implications. Defense Against Biological Attacks. Pp. 225–232. https://doi.org/10.1007/978-3-030-03053-7_11
  • Gruber, K. (2019). Biohackers. EMBO Rep 20. https://doi.org/10.15252/embr.201948397
  • Jefferson, C.; Lentzos, F. y Marris, C. (2014). Synthetic biology and biosecurity: Challenging the «myths». Front Public Health. 2, p. 115. https://doi.org/10.3389/fpubh.2014.00115/xml/ nlm
  • Kumar, A.; Flora, S. J. S. (2020). Genome information of BW agents and their application in biodefence. Handbook on Biological Warfare Preparedness. Pp. 257–271. https://doi. org/10.1016/b978-0-12-812026-2.00013-x
  • Leitenberg, M.; Zilinskas, R. A. y Kuhn, J. H. (2012). The Soviet biological weapons program. En: The Soviet Biological Weapons Program. Harvard University Press.
  • Lentzos, F. (2020). How to protect the world from ultra-targeted biological weapons. Bulletin of the Atomic Scientists. 76, pp. 302–308. https://doi.org/10.1080/00963402.2020.1846412
  • Lentzos, F.; Goodman, M. y National, J. W.-I. (2020). Health security intelligence: engaging across disciplines and sectors.
  • Taylor & Francis. 35, pp. 465–476. https://doi.org/10.1080/02684527.2020.1750166
  • Minogue, T. D. et al. (2019). Next-Generation Sequencing for Biodefense: Biothreat Detection, Forensics, and the Clinic. Clin Chem. 65, pp. 383–392. https://doi.org/10.1373/ clinchem.2016.266536
  • Moodie, M., et al. (2008). Good Bugs, Bad Bugs: A Modern Approach for Detecting Offensive Biological Weapons Research.
  • Ouagrham-Gormley, S. B. y Fye-Marnien, S. R. (2019). Is CRISPR a Security Threat? Defense Against Biological Attacks. Pp. 233–251. https://doi.org/10.1007/978-3-030-03053-7_12
  • Robienski, J. y Simon, J. (2009). Synthetic biology and biosecurity. From low levels of awareness to a comprehensive strategy. EMBO Rep 10, S23. https://doi.org/10.1038/embor.2009.119
  • Sarpong, D., et al. (2020). Do-it-yourself (DiY) science: The proliferation, relevance and concerns. Technol Forecast Soc Change. 158, p. 120127. https://doi.org/10.1016/J.techfore.2020.120127
  • Sharma, A., et al. (2020). Next generation agents (synthetic agents): Emerging threats and challenges in detection, protection, and decontamination. Handbook on Biological Warfare Preparedness. Pp. 217–256. https://doi.org/10.1016/b978-0-12-812026-2.00012-8
  • Tröder, S. E. y Zevnik, B. (2022). History of genome editing: From meganucleases to CRISPR. Lab Anim. 56, pp. 60–68. https://doi.org/10.1177/0023677221994613
  • Trump, B. D., et al. (2020). Building biosecurity for synthetic biology. Mol Syst Biol. 16. https://doi.org/10.15252/msb.20209723
  • Valdivia-Granda, W. A. (2010). Bioinformatics for biodefense: Challenges and opportunities. Biosecurity and Bioterrorism. 8, pp. 69–77. https://doi.org/10.1089/bsp.2009.0024
  • Vogel, K. M. y Ouagrham-Gormley, S. B. (2018). Anticipating emerging biotechnology threats: A case study of CRISPR. Politics and the Life Sciences. 37, pp. 203–219. https://doi. org/10.1017/pls.2018.21
  • Vuong, P., et al. (2022). Small investments with big returns: environmental genomic bioprospecting of microbial life. Crit Rev Microbiol. https://doi.org/10.1080/1040841x.2021.2011833
  • West, R. y Gronvall, G. K. (2020). California shows the way for biosecurity in commercial gene synthesis. Nature Biotechnology. 2020 38:9 38, pp. 1021–1021. https://doi.org/10.1038/ s41587-020-0667-0
  • West, R. y Gronvall, G. K. (2020). CRISPR Cautions: Biosecurity Implications of Gene Editing. Perspect Biol Med. 63, pp. 73–92. https://doi.org/10.1353/pbm.2020.0006
  • Zettler, P. J.; Guerrini, C. J. y Sherkow, J. S. (2019). Regulating genetic biohacking. Science (1979) 364, pp. 34–36. https://doi.org/10.1126/science.aax3248