Proton Environments in Biomimetic Calcium Phosphates Formed from Mesoporous Bioactive CaO–SiO<sub>2</sub>–P<sub>2</sub>O<sub>5</sub> Glasses <i>in Vitro</i>: Insights from Solid-State NMR
- Mathew, Renny 1
- Turdean-Ionescu, Claudia 1
- Yu, Yang 1
- Stevensson, Baltzar 1
- Izquierdo-Barba, Isabel 234
- García, Ana 234
- Arcos, Daniel 234
- Vallet-Regí, María 234
- Edén, Mattias 1
- 1 Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- 2 Departamento de Quı́mica Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense de Madrid
- 3 Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040 Madrid, Spain
- 4 Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
ISSN: 1932-7447, 1932-7455
Año de publicación: 2017
Volumen: 121
Número: 24
Páginas: 13223-132388
Tipo: Artículo
Otras publicaciones en: The Journal of Physical Chemistry C
Resumen
When exposed to body fluids, mesoporousbioactive glasses (MBGs) of the CaO−SiO2−P2O5 systemdevelop a bone-bonding surface layer that initially consists ofamorphous calcium phosphate (ACP), which transforms intohydroxy-carbonate apatite (HCA) with a very similarcomposition as bone/dentin mineral. Information from various1H-based solid-state nuclear magnetic resonance (NMR)experiments was combined to elucidate the evolution of theproton speciations both at the MBG surface and within eachACP/HCA constituent of the biomimetic phosphate layerformed when each of three MBGs with distinct Ca, Si, and Pcontents was immersed in a simulated body fluid (SBF) forvariable periods between 15 min and 30 days. Directly excited magic-angle-spinning (MAS) 1H NMR spectra mainly reflect theMBG component, whose surface is rich in water and silanol (SiOH) moieties. Double-quantum−single-quantum correlation 1HNMR experimentation at fast MAS revealed their interatomic proximities. The comparatively minor H species of each ACP andHCA component were probed selectively by heteronuclear 1H−31P NMR experimentation. The initially prevailing ACP phasecomprises H2O and “nonapatitic” HPO42−/PO43− groups, whereas for prolonged MBG soaking over days, a well-progressed ACP→ HCA transformation was evidenced by a dominating O1H resonance from HCA. We show that 1H-detected 1H → 31P crosspolarization NMR is markedly more sensitive than utilizing powder X-ray diffraction or 31P NMR for detecting the onset of HCAformation, notably so for P-bearing (M)BGs. In relation to the long-standing controversy as to whether bone mineral comprisesACP and/or forms via an ACP precursor, we discuss a recently accepted structural core−shell picture of both synthetic andbiological HCA, highlighting the close relationship between the disordered surface layer and ACP.
Información de financiación
Financiadores
-
Vetenskapsrådet
- 2010-4943
- 2014-4667
-
Carl Tryggers Stiftelse för Vetenskaplig Forskning
- CTS 12:110
-
Fondo Europeo de Desarrollo Regional (FEDER)
- MAT 2013-43299-R
- MAT 2015-64831-R
- MAT 2016-75611-R
-
European Research Council
- Advanced Grant VERDI; ERC-2015-AdG Proposal 694160
- Ministerio de Economía y Competitividad, Agencia Estatal de Investigación (AEI)
Referencias bibliográficas
- 10.1146/annurev.matsci.28.1.271
- 10.1016/j.mser.2007.05.001
- 10.1073/pnas.86.24.9822
- 10.1007/s00198-009-0860-y
- 10.1073/pnas.1009219107
- 10.1529/biophysj.105.070243
- 10.1021/cm200355n
- 10.1038/nmat3787
- 10.1073/pnas.1315080111
- 10.3390/min6020034
- 10.1006/jmrb.1994.1120
- 10.1126/science.1078470
- 10.1007/s00223-002-2111-5
- 10.1039/b708317c
- 10.1021/ja00255a009
- 10.1002/mrc.1774
- 10.1016/j.ssnmr.2008.08.001
- 10.1557/PROC-984-0984-MM06-05
- 10.1021/cm0716598
- 10.1021/cm903596q
- 10.1016/j.molstruc.2010.11.058
- 10.1021/acs.jpcc.5b08732
- 10.1021/cm070531n
- 10.1021/cm9006537
- 10.1021/ja00321a003
- 10.1021/cm050654c
- 10.1021/jp105408c
- 10.1021/jp206237n
- 10.1126/science.153.3743.1523
- 10.1007/BF02015413
- 10.1021/ar50092a003
- 10.1021/jp510229f
- 10.1021/acs.jpcc.5b11739
- 10.1021/jp1082399
- 10.1098/rsta.2011.0257
- 10.1016/j.jnoncrysol.2013.10.001
- 10.1111/j.1151-2916.1991.tb07132.x
- 10.1002/anie.200460598
- 10.1021/cm060488o
- 10.1016/0022-3093(89)90011-2
- 10.1021/cm0008718
- 10.1039/C5RA13410B
- 10.1021/acs.jpcc.5b12490
- 10.1021/jp7107973
- Boskey A. L., (1998), J. Cell. Biochem. Suppl., 30, pp. 83, 10.1002/(SICI)1097-4644(1998)72:30/31+<83::AID-JCB12>3.0.CO;2-F
- 10.1007/s00223-002-1068-8
- 10.1038/nmat2875
- 10.1038/nmat3362
- 10.1016/j.bone.2006.02.058
- 10.1016/j.bone.2007.04.176
- 10.1007/s10856-006-0534-7
- 10.1021/ja01576a068
- 10.1177/08959374870010022201
- 10.1016/0022-0248(89)90102-4
- 10.1021/cg801069t
- 10.1038/ncomms2490
- 10.1021/cg401777x
- 10.1002/chem.201601280
- 10.1021/jp502428k
- 10.1039/c2jm15066b
- 10.1016/j.bone.2006.02.059
- 10.1016/j.jsb.2009.02.001
- 10.1073/pnas.0914218107
- 10.1021/jacs.6b09442
- 10.4028/www.scientific.net/KEM.254-256.927
- 10.1359/jbmr.2002.17.3.472
- 10.1007/s00774-004-0488-0
- 10.1002/(SICI)1521-4095(199905)11:7<579::AID-ADMA579>3.3.CO;2-I
- 10.1021/cm9022776
- 10.1002/jbm.820240607
- 10.1039/b808295b
- 10.1016/j.cplett.2012.07.053
- 10.1016/j.jmr.2015.09.004
- 10.1016/0022-2364(82)90279-7
- 10.1021/cm400487a
- 10.1021/jp504601c
- 10.1063/1.440423
- 10.1016/S0079-6565(97)00018-6
- 10.1021/ja00215a001
- 10.1021/ja954120w
- 10.1002/chem.200400351
- 10.1021/ja043567e
- 10.1038/337539a0
- 10.1016/S0009-2541(00)00321-1
- 10.1021/ja00233a044
- 10.1021/jp0138936
- 10.1021/la0602158
- 10.1002/adem.200800400
- 10.1021/ja01269a023
- Gregg S. J., (1982), Adsorption, Surface Area, and Porosity
- 10.1021/ja01145a126