Proton Environments in Biomimetic Calcium Phosphates Formed from Mesoporous Bioactive CaO–SiO<sub>2</sub>–P<sub>2</sub>O<sub>5</sub> Glasses <i>in Vitro</i>: Insights from Solid-State NMR

  1. Mathew, Renny 1
  2. Turdean-Ionescu, Claudia 1
  3. Yu, Yang 1
  4. Stevensson, Baltzar 1
  5. Izquierdo-Barba, Isabel 234
  6. García, Ana 234
  7. Arcos, Daniel 234
  8. Vallet-Regí, María 234
  9. Edén, Mattias 1
  1. 1 Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
  2. 2 Departamento de Quı́mica Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense de Madrid
  3. 3 Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040 Madrid, Spain
  4. 4 Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
Revista:
The Journal of Physical Chemistry C

ISSN: 1932-7447 1932-7455

Año de publicación: 2017

Volumen: 121

Número: 24

Páginas: 13223-132388

Tipo: Artículo

DOI: 10.1021/ACS.JPCC.7B03469 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: The Journal of Physical Chemistry C

Resumen

When exposed to body fluids, mesoporousbioactive glasses (MBGs) of the CaO−SiO2−P2O5 systemdevelop a bone-bonding surface layer that initially consists ofamorphous calcium phosphate (ACP), which transforms intohydroxy-carbonate apatite (HCA) with a very similarcomposition as bone/dentin mineral. Information from various1H-based solid-state nuclear magnetic resonance (NMR)experiments was combined to elucidate the evolution of theproton speciations both at the MBG surface and within eachACP/HCA constituent of the biomimetic phosphate layerformed when each of three MBGs with distinct Ca, Si, and Pcontents was immersed in a simulated body fluid (SBF) forvariable periods between 15 min and 30 days. Directly excited magic-angle-spinning (MAS) 1H NMR spectra mainly reflect theMBG component, whose surface is rich in water and silanol (SiOH) moieties. Double-quantum−single-quantum correlation 1HNMR experimentation at fast MAS revealed their interatomic proximities. The comparatively minor H species of each ACP andHCA component were probed selectively by heteronuclear 1H−31P NMR experimentation. The initially prevailing ACP phasecomprises H2O and “nonapatitic” HPO42−/PO43− groups, whereas for prolonged MBG soaking over days, a well-progressed ACP→ HCA transformation was evidenced by a dominating O1H resonance from HCA. We show that 1H-detected 1H → 31P crosspolarization NMR is markedly more sensitive than utilizing powder X-ray diffraction or 31P NMR for detecting the onset of HCAformation, notably so for P-bearing (M)BGs. In relation to the long-standing controversy as to whether bone mineral comprisesACP and/or forms via an ACP precursor, we discuss a recently accepted structural core−shell picture of both synthetic andbiological HCA, highlighting the close relationship between the disordered surface layer and ACP.

Información de financiación

Financiadores

  • Vetenskapsrådet
    • 2010-4943
    • 2014-4667
  • Carl Tryggers Stiftelse för Vetenskaplig Forskning
    • CTS 12:110
  • Fondo Europeo de Desarrollo Regional (FEDER)
    • MAT 2013-43299-R
    • MAT 2015-64831-R
    • MAT 2016-75611-R
  • European Research Council
    • Advanced Grant VERDI; ERC-2015-AdG Proposal 694160
  • Ministerio de Economía y Competitividad, Agencia Estatal de Investigación (AEI)

Referencias bibliográficas

  • 10.1146/annurev.matsci.28.1.271
  • 10.1016/j.mser.2007.05.001
  • 10.1073/pnas.86.24.9822
  • 10.1007/s00198-009-0860-y
  • 10.1073/pnas.1009219107
  • 10.1529/biophysj.105.070243
  • 10.1021/cm200355n
  • 10.1038/nmat3787
  • 10.1073/pnas.1315080111
  • 10.3390/min6020034
  • 10.1006/jmrb.1994.1120
  • 10.1126/science.1078470
  • 10.1007/s00223-002-2111-5
  • 10.1039/b708317c
  • 10.1021/ja00255a009
  • 10.1002/mrc.1774
  • 10.1016/j.ssnmr.2008.08.001
  • 10.1557/PROC-984-0984-MM06-05
  • 10.1021/cm0716598
  • 10.1021/cm903596q
  • 10.1016/j.molstruc.2010.11.058
  • 10.1021/acs.jpcc.5b08732
  • 10.1021/cm070531n
  • 10.1021/cm9006537
  • 10.1021/ja00321a003
  • 10.1021/cm050654c
  • 10.1021/jp105408c
  • 10.1021/jp206237n
  • 10.1126/science.153.3743.1523
  • 10.1007/BF02015413
  • 10.1021/ar50092a003
  • 10.1021/jp510229f
  • 10.1021/acs.jpcc.5b11739
  • 10.1021/jp1082399
  • 10.1098/rsta.2011.0257
  • 10.1016/j.jnoncrysol.2013.10.001
  • 10.1111/j.1151-2916.1991.tb07132.x
  • 10.1002/anie.200460598
  • 10.1021/cm060488o
  • 10.1016/0022-3093(89)90011-2
  • 10.1021/cm0008718
  • 10.1039/C5RA13410B
  • 10.1021/acs.jpcc.5b12490
  • 10.1021/jp7107973
  • Boskey A. L., (1998), J. Cell. Biochem. Suppl., 30, pp. 83, 10.1002/(SICI)1097-4644(1998)72:30/31+<83::AID-JCB12>3.0.CO;2-F
  • 10.1007/s00223-002-1068-8
  • 10.1038/nmat2875
  • 10.1038/nmat3362
  • 10.1016/j.bone.2006.02.058
  • 10.1016/j.bone.2007.04.176
  • 10.1007/s10856-006-0534-7
  • 10.1021/ja01576a068
  • 10.1177/08959374870010022201
  • 10.1016/0022-0248(89)90102-4
  • 10.1021/cg801069t
  • 10.1038/ncomms2490
  • 10.1021/cg401777x
  • 10.1002/chem.201601280
  • 10.1021/jp502428k
  • 10.1039/c2jm15066b
  • 10.1016/j.bone.2006.02.059
  • 10.1016/j.jsb.2009.02.001
  • 10.1073/pnas.0914218107
  • 10.1021/jacs.6b09442
  • 10.4028/www.scientific.net/KEM.254-256.927
  • 10.1359/jbmr.2002.17.3.472
  • 10.1007/s00774-004-0488-0
  • 10.1002/(SICI)1521-4095(199905)11:7<579::AID-ADMA579>3.3.CO;2-I
  • 10.1021/cm9022776
  • 10.1002/jbm.820240607
  • 10.1039/b808295b
  • 10.1016/j.cplett.2012.07.053
  • 10.1016/j.jmr.2015.09.004
  • 10.1016/0022-2364(82)90279-7
  • 10.1021/cm400487a
  • 10.1021/jp504601c
  • 10.1063/1.440423
  • 10.1016/S0079-6565(97)00018-6
  • 10.1021/ja00215a001
  • 10.1021/ja954120w
  • 10.1002/chem.200400351
  • 10.1021/ja043567e
  • 10.1038/337539a0
  • 10.1016/S0009-2541(00)00321-1
  • 10.1021/ja00233a044
  • 10.1021/jp0138936
  • 10.1021/la0602158
  • 10.1002/adem.200800400
  • 10.1021/ja01269a023
  • Gregg S. J., (1982), Adsorption, Surface Area, and Porosity
  • 10.1021/ja01145a126