Solid-State <sup>31</sup>P and <sup>1</sup>H NMR Investigations of Amorphous and Crystalline Calcium Phosphates Grown Biomimetically From a Mesoporous Bioactive Glass

  1. Renny Mathew 1
  2. Philips N. Gunawidjaja
  3. Isabel Izquierdo-Barba 23
  4. Kjell Jansson 4
  5. Ana García 23
  6. Daniel Arcos 23
  7. María Vallet-Regí 23
  8. Mattias Edén 1
  1. 1 Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
  2. 2 Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
  3. 3 Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
  4. 4 Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
Revista:
The Journal of Physical Chemistry C

ISSN: 1932-7447 1932-7455

Año de publicación: 2011

Volumen: 115

Número: 42

Páginas: 20572-20582

Tipo: Artículo

DOI: 10.1021/JP206237N SCOPUS: 2-s2.0-80054962408 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: The Journal of Physical Chemistry C

Objetivos de desarrollo sostenible

Resumen

By exploiting 1H and 31P magic-angle spinning nuclear magnetic resonance (NMR) spectroscopy, we explore the proton and orthophosphate environments in biomimetic amorphous calcium phosphate (ACP) and hydroxy-apatite (HA), as grown in vitro at the surface of a 10CaO–85SiO2–5P2O5 mesoporous bioactive glass (MBG) in either a simulated body fluid or buffered water. Transmission electron microscopy confirmed the presence of a calcium phosphate layer comprising nanocrystalline HA. Two-dimensional 1H–31P heteronuclear correlation NMR established predominantly 1H2O↔31PO43– and O1H↔31PO43– contacts in the amorphous and crystalline component, respectively, of the MBG surface-layer; these two pairs exhibit distinctly different 1H→31P cross-polarization dynamics, revealing a twice as large squared effective 1H–31P dipolar coupling constant in ACP compared with HA. These respective observations are mirrored in synthetic (well-crystalline) HA, and the amorphous calcium orthophosphate (CaP) clusters that are present in the pristine MBG pore walls: besides highlighting very similar local 1H and 31P environments in synthetic and biomimetic HA, our findings evidence closely related NMR characteristics, and thereby similar local structures, of the CaP clusters in the pristine MBG relative to biomimetic ACP.

Referencias bibliográficas

  • Lowenstam H. A., (1989), On Biomineralization, 10.1093/oso/9780195049770.001.0001
  • Weiner S., (1998), Annu. Rev. Mater. Sci., 28, pp. 271, 10.1146/annurev.matsci.28.1.271
  • Wise E. R., (2007), Chem. Mater., 19, pp. 5055, 10.1021/cm702054c
  • Hu Y. Y., (2010), Proc. Nat. Acad. Sci. U.S.A., 107, pp. 22425, 10.1073/pnas.1009219107
  • Dorozhkin S. V., (2009), Materials, 2, pp. 399, 10.3390/ma2020399
  • Hench L. L., (1991), J. Am. Ceram. Soc., 74, pp. 1487, 10.1111/j.1151-2916.1991.tb07132.x
  • Vallet-Regí M., (2003), Eur. J. Inorg. Chem., pp. 1029, 10.1002/ejic.200390134
  • Arcos D., (2010), Acta Biomater., 6, pp. 2874, 10.1016/j.actbio.2010.02.012
  • Hench L. L., (2002), Science, 295, pp. 1014, 10.1126/science.1067404
  • Rahaman M. N., (2011), Acta Biomater., 7, pp. 2355, 10.1016/j.actbio.2011.03.016
  • Ogino M., (1980), J. Non-Cryst. Solids, 38, pp. 673, 10.1016/0022-3093(80)90514-1
  • Kim C. Y., (1989), J. Non-Cryst. Solids, 113, pp. 195, 10.1016/0022-3093(89)90011-2
  • Ebisawa Y., (1990), J. Mater. Sci. Mater. Med., 1, pp. 239, 10.1007/BF00701083
  • Andersson Ö. H., (1991), J. Non-Cryst. Solids, 129, pp. 145, 10.1016/0022-3093(91)90090-S
  • Ohtsuki C., (1992), J. Non-Cryst. Solids, 143, pp. 84, 10.1016/S0022-3093(05)80556-3
  • Vallet-Regí M., (2000), Chem. Mater., 12, pp. 3770, 10.1021/cm001068g
  • Takadama H., (2001), Chem. Mater., 13, pp. 1108, 10.1021/cm0008718
  • Salinas A. J., (2002), J. Biomed. Mater. Res., Part A, 61, pp. 524, 10.1002/jbm.10229
  • Saravanapavan P., (2003), J. Biomed. Mater. Res., Part A, 66, pp. 110, 10.1002/jbm.a.10532
  • Banchet V., (2004), Surf. Interface Anal., 36, pp. 658, 10.1002/sia.1916
  • Yan X. X., (2004), Angew. Chem., Int. Ed., 43, pp. 5980, 10.1002/anie.200460598
  • Yan X. X., (2006), Biomaterials, 27, pp. 3396, 10.1016/j.biomaterials.2006.01.043
  • López-Noriega A., (2006), Chem. Mater., 18, pp. 3137, 10.1021/cm060488o
  • Hayakawa S., (1999), J. Am. Ceram. Soc., 82, pp. 2155, 10.1111/j.1151-2916.1999.tb02056.x
  • Lin K. S. K., (2005), Chem. Mater., 17, pp. 4493, 10.1021/cm050654c
  • Skipper L. J., (2005), Phys. Chem. Glasses, 46, pp. 372
  • Dietrich E., (2009), Adv. Eng. Mater., 11, pp. B98, 10.1002/adem.200800400
  • Gunawidjaja P. N., (2010), J. Phys. Chem. C, 114, pp. 19345, 10.1021/jp105408c
  • Gunawidjaja, P. N.; Izquierdo-Barba, I.; Mathew, R.; Jansson, K.; García, A.; Grins, J.; Arcos, D.; Vallet-Regí, M.; Edén, M. 2011, in press.
  • Beshah K., (1990), J. Solid. State. Chem., 84, pp. 71, 10.1016/0022-4596(90)90185-Z
  • Santos R. A., (1994), J. Magn. Reson., Ser. B, 105, pp. 183, 10.1006/jmrb.1994.1120
  • Rey C., (1995), J. Bone Miner. Res., 10, pp. 1577, 10.1002/jbmr.5650101020
  • Wu Y. T., (2002), J. Bone Miner. Res., 17, pp. 472, 10.1359/jbmr.2002.17.3.472
  • Cho G. Y., (2003), Science, 300, pp. 1123, 10.1126/science.1078470
  • Kaflak-Hachulska A., (2003), Calcif. Tissue Int., 73, pp. 476, 10.1007/s00223-002-2111-5
  • Kaflak A., (2007), Solid State Nucl. Magn. Reson., 31, pp. 174, 10.1016/j.ssnmr.2007.04.005
  • Kolmas J., (2007), Chem. Commun., pp. 4390, 10.1039/b708317c
  • Kaflak A., (2008), Magn. Reson. Chem., 46, pp. 335, 10.1002/mrc.2207
  • Maltsev S., (2007), J. Mater. Sci., 42, pp. 8804, 10.1007/s10853-007-1916-z
  • Wilson E. E., (2006), Biophys. J., 90, pp. 3722, 10.1529/biophysj.105.070243
  • Huang S. J., (2009), Chem. Mater., 21, pp. 2583, 10.1021/cm9006537
  • Laurencin D., (2010), Phys. Chem. Chem. Phys., 12, pp. 1081, 10.1039/B915708E
  • Kokubo T., (1990), J. Biomed. Mater. Res., 24, pp. 721, 10.1002/jbm.820240607
  • Leonova E., (2008), J. Phys. Chem. C, 112, pp. 5552, 10.1021/jp7107973
  • García A., (2009), Chem. Mater., 21, pp. 5474, 10.1021/cm9022776
  • Brinker C. J., (1999), Adv. Mater., 11, pp. 579, 10.1002/(SICI)1521-4095(199905)11:7<579::AID-ADMA579>3.0.CO;2-R
  • Levitt M. H., (1997), J. Magn. Reson., 126, pp. 164, 10.1006/jmre.1997.1161
  • Ernst R. R., (1987), Principles of Nuclear Magnetic Resonance in One and Two Dimensions
  • Metz G., (1994), J. Magn. Reson., Ser. A, 110, pp. 219, 10.1006/jmra.1994.1208
  • Alemany L. B., (1983), J. Am. Chem. Soc., 105, pp. 2133, 10.1021/ja00346a006
  • Kolodziejski W., (2002), Chem. Rev., 102, pp. 613, 10.1021/cr000060n
  • Ladizhansky V., (2000), J. Chem. Phys., 112, pp. 7158, 10.1063/1.481281
  • Tropp J., (1983), J. Am. Chem. Soc., 105, pp. 22, 10.1021/ja00339a006
  • Aue W. P., (1984), Biochemistry, 23, pp. 6110, 10.1021/bi00320a032
  • Belton P. S., (1988), J. Phys. Chem. Solids, 49, pp. 21, 10.1016/0022-3697(88)90129-1
  • Isobe T., (2002), J. Phys. Chem. B, 106, pp. 5169, 10.1021/jp0138936
  • Jäger C., (2006), Magn. Reson. Chem., 44, pp. 573, 10.1002/mrc.1774
  • Roberts J. E., (1991), Calcif. Tissue Int., 49, pp. 378, 10.1007/BF02555846
  • Jäger C., (2006), Bioceramics. Volume 18, 309, pp. 69
  • Posner A. S., (1975), Acc. Chem. Res., 8, pp. 273, 10.1021/ar50092a003
  • Dorozhkin S. V., (2010), Acta Biomater., 6, pp. 4457, 10.1016/j.actbio.2010.06.031
  • Rothwell W. P., (1980), J. Am. Chem. Soc., 102, pp. 2637, 10.1021/ja00528a020