Biomimetic Apatite Mineralization Mechanisms of Mesoporous Bioactive Glasses as Probed by Multinuclear <sup>31</sup>P, <sup>29</sup>Si, <sup>23</sup>Na and <sup>13</sup>C Solid-State NMR

  1. Philips N. Gunawidjaja 3
  2. Andy Y. H. Lo 3
  3. Isabel Izquierdo-Barba 12
  4. Ana García 12
  5. Daniel Arcos 12
  6. Baltzar Stevensson 3
  7. Jekabs Grins 45
  8. María Vallet-Regí 12
  9. Mattias Edén 3
  1. 1 Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, UniVersidad Complutense de Madrid, 28040 Madrid, Spain
  2. 2 Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain
  3. 3 Physical Chemistry Division, Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
  4. 4 Inorganic and Structural Chemistry Division, Department of Materials and Environmental Chemistry, Arrhenius Laboratory,
  5. 5 Stockholm University, SE-106 91, Stockholm, Sweden
Revista:
The Journal of Physical Chemistry C

ISSN: 1932-7447 1932-7455

Año de publicación: 2010

Volumen: 114

Número: 45

Páginas: 19345-19356

Tipo: Artículo

DOI: 10.1021/JP105408C GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: The Journal of Physical Chemistry C

Resumen

An array of magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy experiments is applied to explore the surface reactions of a mesoporous bioactive glass (MBG) of composition Ca0.10Si0.85P0.04O1.90 when subjected to a simulated body fluid (SBF) for variable intervals. Powder X-ray diffraction and 31P NMR techniques are employed to quantitatively monitor the formation of an initially amorphous calcium phosphate surface layer and its subsequent crystallization into hydroxycarbonate apatite (HCA). Prior to the onset of HCA formation, 1H → 29Si cross-polarization (CP) NMR evidence dissolution of calcium ions; a slightly increased connectivity of the speciation of silicate ions is observed at the MBG surface over 1 week of SBF exposure. The incorporation of carbonate and sodium ions into the bioactive orthophosphate surface layer is explored by 1H → 13C CPMAS and 23Na NMR, respectively. We discuss similarities and distinctions in composition−bioactivity relationships established for traditional melt-prepared bioglasses compared to MBGs. The high bioactivity of phosphorus-bearing MBGs is rationalized to stem from an acceleration of their surface reactions due to presence of amorphous calcium orthophosphate clusters of the MBG pore wall.

Referencias bibliográficas

  • Hench L. L., (1971), J. Biomed. Mater. Res., 2, pp. 117, 10.1002/jbm.820050611
  • Clark A. E., (1976), J. Am. Ceram. Soc., 59, pp. 37, 10.1111/j.1151-2916.1976.tb09382.x
  • Hench L. L., (1991), J. Am. Ceram. Soc., 74, pp. 1487, 10.1111/j.1151-2916.1991.tb07132.x
  • Vallet-Regí M., (2003), Eur. J. Inorg. Chem., pp. 1029, 10.1002/ejic.200390134
  • Vallet-Regí M., (2008), J. Biomed. Nanotechnol., 4, pp. 1
  • Vallet-Regí M., (2001), J. Chem. Soc., Dalton Trans., pp. 97, 10.1039/b007852m
  • Kokubo T., (1990), J. Biomed. Mater. Res., 24, pp. 721, 10.1002/jbm.820240607
  • Kim C. Y., (1989), J. Non-Cryst. Solids, 113, pp. 195, 10.1016/0022-3093(89)90011-2
  • Andersson Ö. H., (1991), J. Non-Cryst. Solids, 129, pp. 145, 10.1016/0022-3093(91)90090-S
  • Lebecq I., (2007), J. Biomed. Mater. Res., Part A, 83, pp. 156, 10.1002/jbm.a.31228
  • Saravanapavan P., (2003), J. Biomed. Mater. Res., Part A, 66, pp. 110, 10.1002/jbm.a.10532
  • Dietrich E., (2009), Adv. Eng. Mater., 11, pp. B98, 10.1002/adem.200800400
  • Hayakawa S., (1999), J. Am. Ceram. Soc., 82, pp. 2155, 10.1111/j.1151-2916.1999.tb02056.x
  • Ogino M., (1980), J. Non-Cryst. Solids, 38, pp. 673, 10.1016/0022-3093(80)90514-1
  • Ebisawa Y., (1990), J. Mater. Sci. Mater. Med., 1, pp. 239, 10.1007/BF00701083
  • Skipper L. J., (2005), Phys. Chem. Glasses, 46, pp. 372
  • Salinas A. J., (2002), J. Biomed. Mater. Res., Part A, 61, pp. 524, 10.1002/jbm.10229
  • Arcos D., (2003), J. Biomed. Mater. Res., Part A, 65, pp. 344, 10.1002/jbm.a.10503
  • Peltola T., (1999), J. Biomed. Mater. Res., Part A, 44, pp. 12, 10.1002/(SICI)1097-4636(199901)44:1<12::AID-JBM2>3.0.CO;2-E
  • Jokinen M., (1998), J. Sol-Gel Sci. Technol., 12, pp. 159, 10.1023/A:1008642117227
  • Lin K. S. K., (2005), Chem. Mater., 17, pp. 4493, 10.1021/cm050654c
  • Hayakawa S., (1996), Phys. Chem. Glasses, 37, pp. 188
  • Ohtsuki C., (1992), J. Non-Cryst. Solids, 143, pp. 84, 10.1016/S0022-3093(05)80556-3
  • Pedone A., (2009), J. Phys. Chem. C, 113, pp. 20773, 10.1021/jp9071263
  • Tilocca A., (2007), J. Phys. Chem. B, 111, pp. 14256, 10.1021/jp075677o
  • Tilocca A., (2009), Proc. R. Soc. London, Ser. A, 465, pp. 1003
  • Sahai N., (2000), J. Phys. Chem. B, 104, pp. 4322, 10.1021/jp9935889
  • Sahai N., (2005), Biomaterials, 26, pp. 5763, 10.1016/j.biomaterials.2005.02.037
  • Tilocca A., (2010), Langmuir, 26, pp. 545, 10.1021/la902548f
  • Tilocca A., (2006), J. Phys. Chem. B, 110, pp. 25810, 10.1021/jp065146k
  • West, J. H.; Hench, L. L.InBioceramics;Yamamuro, T.; Kokubo, T.; Nakamura, T., Eds.Kobunshi Kankokai:Kyoto, Japan, 1991; Vol. 5, p75.
  • Li P. J., (1992), J. Am. Ceram. Soc., 75, pp. 2094, 10.1111/j.1151-2916.1992.tb04470.x
  • Vallet-Regí M., (2000), Chem. Mater., 12, pp. 3770, 10.1021/cm001068g
  • Aguiar H., (2008), J. Non-Cryst. Solids, 354, pp. 5004, 10.1016/j.jnoncrysol.2008.07.033
  • Aguiar H., (2008), J. Non-Cryst. Solids, 354, pp. 4075, 10.1016/j.jnoncrysol.2008.05.031
  • Lockyer M. W. G., (1995), J. Non-Cryst. Solids, 188, pp. 207, 10.1016/0022-3093(95)00188-3
  • Takadama H., (2001), Chem. Mater., 13, pp. 1108, 10.1021/cm0008718
  • Yan X. X., (2004), Angew. Chem., Int. Ed., 43, pp. 5980, 10.1002/anie.200460598
  • Yan X. X., (2006), Biomaterials, 27, pp. 3396, 10.1016/j.biomaterials.2006.01.043
  • Li X., (2007), Chem. Mater., 19, pp. 4322, 10.1021/cm0708564
  • García A., (2009), Chem. Mater., 21, pp. 5474, 10.1021/cm9022776
  • Yan X. X., (2005), J. Non-Cryst. Solids, 351, pp. 3209, 10.1016/j.jnoncrysol.2005.08.024
  • Shi Q. H., (2006), Adv. Mater., 18, pp. 1038, 10.1002/adma.200502292
  • López-Noriega A., (2006), Chem. Mater., 18, pp. 3137, 10.1021/cm060488o
  • Izquierdo-Barba I., (2008), Chem. Mater., 20, pp. 3191, 10.1021/cm800172x
  • Jagadeesan D., (2008), J. Phys. Chem. C, 112, pp. 7379, 10.1021/jp800850m
  • Brinker C. J., (1999), Adv. Mater., 11, pp. 579, 10.1002/(SICI)1521-4095(199905)11:7<579::AID-ADMA579>3.0.CO;2-R
  • Leonova E., (2008), J. Phys. Chem. C, 112, pp. 5552, 10.1021/jp7107973
  • Metz G., (1994), J. Magn. Reson., Ser. A, 110, pp. 219, 10.1006/jmra.1994.1208
  • MacKenzie K. J. D., (2002), Multinuclear Solid-State NMR of Inorganic Materials
  • Engelhardt G., (1987), High-Resolution Solid-State NMR of Silicates and Zeolites
  • Maciel G. E., (1980), J. Am. Chem. Soc., 102, pp. 7606, 10.1021/ja00545a056
  • Rothwell W. P., (1980), J. Am. Chem. Soc., 102, pp. 2637, 10.1021/ja00528a020
  • Turner G. L., (1986), J. Magn. Reson., 70, pp. 408
  • Aue W. P., (1984), Biochemistry, 23, pp. 6110, 10.1021/bi00320a032
  • Tropp J., (1983), J. Am. Chem. Soc., 105, pp. 22, 10.1021/ja00339a006
  • Yesinowski J. P., (1987), J. Am. Chem. Soc., 109, pp. 6274, 10.1021/ja00255a009
  • Jäger C., (2006), Magn. Reson. Chem., 44, pp. 573, 10.1002/mrc.1774
  • Panda R. N., (2003), J. Phys. Chem. Solids, 64, pp. 193, 10.1016/S0022-3697(02)00257-3
  • Padilla S., (2008), Chem. Mater., 20, pp. 5942, 10.1021/cm801626k
  • Edén M., (2008), Solid State Sci., 10, pp. 50, 10.1016/j.solidstatesciences.2007.08.018
  • Mason H. E., (2008), Chem. Mater., 20, pp. 294, 10.1021/cm0716598
  • Laurencin D., (2010), Phys. Chem. Chem. Phys., 12, pp. 1081, 10.1039/B915708E
  • Koller H., (1994), J. Phys. Chem., 98, pp. 1544, 10.1021/j100057a004
  • Bunel G., (1972), Ann. Chim., 7, pp. 65
  • Beshah K., (1990), J. Solid State Chem., 84, pp. 71, 10.1016/0022-4596(90)90185-Z
  • Fleet M. E., (2004), J. Solid State Chem., 177, pp. 3174, 10.1016/j.jssc.2004.04.002
  • Wilson R. M., (1999), Am. Mineral., 84, pp. 1406, 10.2138/am-1999-0919
  • Kaflak-Hachulska A., (2003), Calcif. Tissue Int., 73, pp. 476, 10.1007/s00223-002-2111-5
  • Wu Y. T., (2002), J. Bone Miner. Res., 17, pp. 472, 10.1359/jbmr.2002.17.3.472
  • Regnier P., (1994), Am. Mineral., 79, pp. 809
  • Wise E. R., (2007), Chem. Mater., 19, pp. 5055, 10.1021/cm702054c
  • Reid D. G., (2008), Chem. Mater., 20, pp. 3549, 10.1021/cm800514u
  • Gebauer D., Angew. Chem., Int. Ed.
  • Stevels J. M., (1960), Philips Tech. Rundsch, 9, pp. 337
  • Strnad Z., (1992), Biomaterials, 13, pp. 317, 10.1016/0142-9612(92)90056-T
  • Hill R., (1996), J. Mater. Sci. Lett., 15, pp. 1122, 10.1007/BF00539955
  • Elgayar I., (2005), J. Non-Cryst. Solids, 351, pp. 173, 10.1016/j.jnoncrysol.2004.07.067
  • O’Donnell M. D., (2008), J. Non-Cryst. Solids, 354, pp. 3554, 10.1016/j.jnoncrysol.2008.03.034
  • Watts S. J., (2010), J. Non-Cryst. Solids, 356, pp. 517, 10.1016/j.jnoncrysol.2009.04.074
  • Vallet-Regí M., (2005), Chem. Mater., 17, pp. 1874, 10.1021/cm047956j
  • Kay M. I., (1964), Nature, 204, pp. 1050, 10.1038/2041050a0