Essential Role of Calcium Phosphate Heterogeneities in 2D-Hexagonal and 3D-Cubic SiO<sub>2</sub>−CaO−P<sub>2</sub>O<sub>5</sub> Mesoporous Bioactive Glasses

  1. A. García 12
  2. M. Cicuéndez 12
  3. I. Izquierdo-Barba 12
  4. D. Arcos 12
  5. M. Vallet-Regí 12
  1. 1 Departamento Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
  2. 2 Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
Revista:
Chemistry of Materials

ISSN: 0897-4756 1520-5002

Año de publicación: 2009

Volumen: 21

Número: 22

Páginas: 5474-5484

Tipo: Artículo

DOI: 10.1021/CM9022776 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Chemistry of Materials

Resumen

Mesoporous bioactive glasses (MBGs) with a compoisition of 85SiO2−10CaO−5P2O5 (mol %) have been prepared through the evaporation-induced self-assembly (EISA) method, using P123 as a structure directing agent. For the first time, SiO2−CaO−P2O5 MBGs with identical composition and textural properties, but exhibiting different bicontinuous 3D-cubic and 2D-hexagonal structures, have been prepared. These materials allow us to discriminate the role of the structure on the bioactivity, from other parameters. To understand the role of each component on the mesostructure, local environment, and bioactive behavior, mesoporous 100SiO2, 95SiO2−5P2O5, and 90SiO2−10CaO (mol %) materials were also prepared under the same conditions. The results demonstrate that the joint presence of CaO and P2O5 results in amorphous calcium phosphate (ACP) clusters sited at the pore wall surface. This heterogeneity highly improves the bioactive behavior of these materials. In addition, the presence of ACP clusters within the silica network leads to different mesoporous structures. The mesoporous order can be tuned through a rigorous control of the solvent evaporation temperature during the mesophase formation, resulting in p6mm, p6mm/Ia3̅d coexistence, and Ia3̅d phases for 20, 30, and 40 °C, respectively. Preliminary results indicate that, in the case of identical composition and textural properties, the mesoporous structure does not have influence on the apatite formation, although initial ionic exchange is slightly enhanced for 3D cubic bicontinuous structures.

Referencias bibliográficas

  • Yan X. X., (2004), Angew. Chem., Int. Ed., 43, pp. 5980, 10.1002/anie.200460598
  • Li R., (1991), J. Appl. Biomater., 2, pp. 231, 10.1002/jab.770020403
  • Peltola T., (1999), J. Biomed. Mater. Res., 44, pp. 12, 10.1002/(SICI)1097-4636(199901)44:1<12::AID-JBM2>3.0.CO;2-E
  • Vallet-Regí M., (2003), Eur. J. Inorg. Chem., pp. 1029, 10.1002/ejic.200390134
  • Vallet-Regí M., (2006), Dalton Trans., 44, pp. 5211, 10.1039/b610219k
  • Hench L. L., (1990), Chem. Rev., 90, pp. 33, 10.1021/cr00099a003
  • Mann S., (1997), Chem. Mater., 9, pp. 2300, 10.1021/cm970274u
  • Pereira M. M., (1994), J. Biomed. Mater. Res., 28, pp. 693, 10.1002/jbm.820280606
  • Vallet-Regí M., (2000), J. Biomed. Mater. Res., 51, pp. 23, 10.1002/(SICI)1097-4636(200007)51:1<23::AID-JBM4>3.0.CO;2-B
  • Izquierdo-Barba I, (1999), J. Biomed. Mater. Res., 47, pp. 243, 10.1002/(SICI)1097-4636(199911)47:2<243::AID-JBM15>3.0.CO;2-S
  • Jones J. R., (2003), J. Mater. Sci., 38, pp. 3783, 10.1023/A:1025988301542
  • Jokinen M., (1998), J. Sol-Gel Sci. Technol., 12, pp. 159, 10.1023/A:1008642117227
  • Vallet-Regí M., (2007), Angew. Chem., Int. Ed., 46, pp. 7548, 10.1002/anie.200604488
  • Vallet-Regí M., (2008), J. Biomed. Nanotechnol., 4, pp. 1
  • Vallet-Regí M., (2008), Prog. Solid State Chem., 36, pp. 163, 10.1016/j.progsolidstchem.2007.10.002
  • Yan X. X., (2005), J. Non-Cryst. Solids, 351, pp. 3209, 10.1016/j.jnoncrysol.2005.08.024
  • Yan X. X., (2006), Biomaterials, 27, pp. 3396, 10.1016/j.biomaterials.2006.01.043
  • Arcos D., (2009), Chem. Mater., 21, pp. 1000, 10.1021/cm801649z
  • Li X., (2007), Microporous Mesoporous Mater., 102, pp. 151, 10.1016/j.micromeso.2006.12.048
  • Shi Q. H., (2006), Adv. Mater., 18, pp. 1038, 10.1002/adma.200502292
  • Yun H., (2007), Chem. Commun., pp. 2139, 10.1039/b702103h
  • Li X., (2008), J. Biomed. Mater. Res., 84, pp. 84
  • Sun J., (2008), J. Non-Cryst. Solids, 354, pp. 3799, 10.1016/j.jnoncrysol.2008.05.001
  • Zhao L. Z., (2008), Microporous Mesoporous Mater., 109, pp. 210, 10.1016/j.micromeso.2007.04.041
  • Xia W., (2006), J. Controlled Release, 110, pp. 522, 10.1016/j.jconrel.2005.11.002
  • Ostomel T. A., (2006), Small, 2, pp. 1261, 10.1002/smll.200600177
  • Brinker C. J., (1999), Adv. Mater., 11, pp. 579, 10.1002/(SICI)1521-4095(199905)11:7<579::AID-ADMA579>3.0.CO;2-R
  • Zhao Y. F., (2008), J. Biomed. Mater. Res., 85, pp. 1032, 10.1002/jbm.a.31545
  • Yun H., (2008), Solid State Sci., 10, pp. 1083, 10.1016/j.solidstatesciences.2007.11.037
  • Yun H., (2007), Mater. Lett., 61, pp. 4569, 10.1016/j.matlet.2007.02.075
  • López-Noriega A., (2006), Chem. Mater., 18, pp. 3137, 10.1021/cm060488o
  • Izquierdo-Barba I., (2008), Chem. Mater., 20, pp. 3191, 10.1021/cm800172x
  • Leonova E., (2008), J. Phys. Chem. C, 112, pp. 5552, 10.1021/jp7107973
  • Kokubo T., (1990), J. Biomed. Mater. Res., 24, pp. 721, 10.1002/jbm.820240607
  • Warren L. D., (1989), J. Biomed. Mater. Res.: Appl. Biomat., 23, pp. 201
  • Sakamoto Y., (2004), Angew. Chem., Int. Ed., 43, pp. 5231, 10.1002/anie.200460449
  • MacKenzie K. J. D., (2002), Multinuclear Solid-State NMR of Inorganic Materials
  • Li Z., (2007), Microporous Mesoporous Mater., 105, pp. 34, 10.1016/j.micromeso.2007.05.017
  • Izquierdo-Barba I., (2005), Solid State Sci., 7, pp. 983, 10.1016/j.solidstatesciences.2005.04.003