Review of Laser-induced Breakdown Spectroscopy (LIBS) in Food Analysis

  1. Cáceres, J. O. 1
  1. 1 Laser Chemistry Research Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid Plaza de Ciencias 1 28040 Madrid Spain jcaceres@ucm.es
Libro:
Advanced Spectroscopic Techniques for Food Quality

ISBN: 9781839164040 9781839164040

Año de publicación: 2022

Páginas: 94-110

Tipo: Capítulo de Libro

DOI: 10.1039/9781839165849-00094 GOOGLE SCHOLAR lock_openAcceso abierto editor

Referencias bibliográficas

  • Caceres, (2013), Appl. Spectrosc., 67, pp. 1064, 10.1366/12-06916
  • (2020), Spectroscopic Techniques & Artificial Intelligence for Food and Beverage Analysis
  • Spink, (2011), J. Food Sci., 76, pp. R157, 10.1111/j.1750-3841.2011.02417.x
  • (2013), Handbook of Laser-Induced Breakdown Spectroscopy
  • Moncayo, (2015), Chemom. Intell. Lab. Syst., 146, pp. 354, 10.1016/j.chemolab.2015.06.004
  • (2008), Laser Induced Breakdown Spectroscopy (LIBS)
  • Autrique, (2013), J. Appl. Phys., 114, pp. 023301, 10.1063/1.4812577
  • Hahn, (2010), Appl. Spectrosc., 64, pp. 335A, 10.1366/000370210793561691
  • Hahn, (2012), Appl. Spectrosc., 66, pp. 347, 10.1366/11-06574
  • Nicolodelli, (2019), TrAC, Trends Anal. Chem., 115, pp. 70, 10.1016/j.trac.2019.03.032
  • Yang, (2018), Appl. Opt., 57, pp. 3730, 10.1364/AO.57.003730
  • Moncayo, (2016), Talanta, 158, pp. 185, 10.1016/j.talanta.2016.05.059
  • Fortes, (2013), Anal. Chem., 85, pp. 640, 10.1021/ac303220r
  • Gyftokostas, (2021), Sci. Rep., 11, pp. 5360, 10.1038/s41598-021-84941-z
  • Marín-Roldan, (2013), Spectrochim. Acta, Part B, 88, pp. 186, 10.1016/j.sab.2013.07.008
  • Silva, (2017), Spectrochim. Acta, Part B, 135, pp. 29, 10.1016/j.sab.2017.06.015
  • EU-Comm (213/2001), (2001), Off. J. Eur. Communities, pp. L37/31
  • Andersen, (2016), Food Control, 64, pp. 226, 10.1016/j.foodcont.2016.01.001
  • Bilge, (2016), Meat Sci., 119, pp. 118, 10.1016/j.meatsci.2016.04.035
  • Temiz, (2018), J. Food Compos. Anal., 67, pp. 48, 10.1016/j.jfca.2017.12.032
  • Sezer, (2018), Int. Dairy J., 81, pp. 1, 10.1016/j.idairyj.2017.12.005
  • Liu, (2019), Food Bioprocess Technol., 12, pp. 347, 10.1007/s11947-018-2216-0
  • Silva, (2019), Food Chem., 278, pp. 223, 10.1016/j.foodchem.2018.11.062
  • Baskali-Bouregaa, (2020), Talanta, 211, pp. 120674, 10.1016/j.talanta.2019.120674
  • Jantzi, (2016), Spectrochim. Acta, Part B, 115, pp. 52, 10.1016/j.sab.2015.11.002
  • Chen, (2018), Spectrochim. Acta, Part B, 150, pp. 77, 10.1016/j.sab.2018.10.011
  • Marina-Montes, (2021), Anal. Chim. Acta, 1181, pp. 338947, 10.1016/j.aca.2021.338947
  • Kagawa, (1991), Jpn. J. Appl. Phys., 30, pp. L1899, 10.1143/JJAP.30.L1899
  • Rinaldi, (2001), Spectrochim. Acta, Part B, 56, pp. 1419, 10.1016/S0584-8547(01)00256-7
  • Juvé, (2008), Spectroch. Acta, Part B, 63, pp. 1047, 10.1016/j.sab.2008.08.009
  • Beldjilali, (2010), Spectroch. Acta, Part B, 65, pp. 727, 10.1016/j.sab.2010.04.015
  • Lei, (2009), Spectroch. Acta, Part B, 64, pp. 891, 10.1016/j.sab.2009.07.015
  • Cama-Moncunill, (2017), Spectroch. Acta, Part B, 135, pp. 6, 10.1016/j.sab.2017.06.014
  • dos Santos Augusto, (2017), Food Res. Int., 94, pp. 72, 10.1016/j.foodres.2017.01.027
  • Huang, (2017), Appl. Opt., 56, pp. 24, 10.1364/AO.56.000024
  • Ji, (2017), Sensors, 17, pp. 2655, 10.3390/s17112655
  • Su, (2021), Food Chem., 338, pp. 127797, 10.1016/j.foodchem.2020.127797
  • Ferreira, (2010), Food Control, 21, pp. 1327, 10.1016/j.foodcont.2010.04.004
  • Peruchi, (2014), Spectrochim. Acta, Part B, 100, pp. 129, 10.1016/j.sab.2014.08.025
  • Wang, (2017), J. Appl. Spectrosc., 84, pp. 188, 10.1007/s10812-017-0448-9
  • Lei, (2011), Anal. Bioanal. Chem., 400, pp. 3303, 10.1007/s00216-011-4813-x
  • Markiewicz-Keszycka, (2019), Int. Dairy J., 97, pp. 57, 10.1016/j.idairyj.2019.05.010
  • Cama-Moncunill, (2020), Food Chem., 309, pp. 125754, 10.1016/j.foodchem.2019.125754
  • Zhao, (2020), Food Chem., 320, pp. 126639, 10.1016/j.foodchem.2020.126639
  • Abdel-Salam, (2013), Talanta, 115, pp. 422, 10.1016/j.talanta.2013.06.003
  • Bilge, (2015), Food Chem., 181, pp. 186, 10.1016/j.foodchem.2015.02.090
  • Bilge, (2016), Eur. Food Res. Technol., 242, pp. 1685, 10.1007/s00217-016-2668-2
  • Hu, (2015), Plasma Sci. Technol., 17, pp. 711, 10.1088/1009-0630/17/8/17
  • Singh, (2017), Food Chem., 221, pp. 1778, 10.1016/j.foodchem.2016.10.104
  • Bocková, (2018), Appl. Opt., 57, pp. 8272, 10.1364/AO.57.008272
  • Yang, (2019), Food Chem., 272, pp. 323, 10.1016/j.foodchem.2018.07.214
  • Alam, (2020), Talanta, 219, pp. 121258, 10.1016/j.talanta.2020.121258
  • Yang, (2020), Data Br., 33, pp. 106483, 10.1016/j.dib.2020.106483
  • Kim, (2012), J. Agric. Food Chem., 60, pp. 718, 10.1021/jf203518f
  • Multari, (2013), J. Agric. Food Chem., 61, pp. 8687, 10.1021/jf4029317
  • Multari, (2013), J. Agric. Food Chem., 61, pp. 2348, 10.1021/jf304589s
  • Ma, (2014), Food Anal. Methods, 7, pp. 1858, 10.1007/s12161-014-9828-4
  • Du, (2015), RSC Adv., 5, pp. 79956, 10.1039/C5RA12461A
  • Sezer, (2018), Meat Sci., 135, pp. 123, 10.1016/j.meatsci.2017.09.010
  • Mehder, (2016), J. Environ. Sci. Health, Part B, 51, pp. 358, 10.1080/03601234.2016.1142317
  • Mbesse Kongbonga, (2014), Food Chem., 147, pp. 327, 10.1016/j.foodchem.2013.09.145
  • Moncayo, (2017), Food Chem., 232, pp. 322, 10.1016/j.foodchem.2017.04.017
  • Bilge, (2016), Food Chem., 212, pp. 183, 10.1016/j.foodchem.2016.05.169
  • Velioglu, (2018), Meat Sci., 138, pp. 28, 10.1016/j.meatsci.2017.12.003
  • Sezer, (2018), Food Chem., 264, pp. 142, 10.1016/j.foodchem.2018.05.037
  • Yang, (2018), J. Cereal Sci., 80, pp. 111, 10.1016/j.jcs.2018.01.007
  • Stefas, (2020), Spectrochim. Acta, Part B, 172, pp. 105969, 10.1016/j.sab.2020.105969
  • Tian, (2017), Spectrochim. Acta, Part B, 135, pp. 91, 10.1016/j.sab.2017.07.003
  • Liu, (2012), Spectrochim. Acta, Part B, 73, pp. 71, 10.1016/j.sab.2012.07.009
  • Sezer, (2016), J. Agric. Food Chem., 64, pp. 9459, 10.1021/acs.jafc.6b04828